patrickvonplaten commited on
Commit
b88c59f
1 Parent(s): e58dd86
control_net_canny.py CHANGED
@@ -4,7 +4,9 @@ import os
4
  from huggingface_hub import HfApi
5
  from pathlib import Path
6
  from diffusers.utils import load_image
7
- from controlnet_aux import CannyDetector
 
 
8
 
9
  from diffusers import (
10
  ControlNetModel,
@@ -18,9 +20,15 @@ checkpoint = sys.argv[1]
18
  image = load_image(
19
  "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
20
  )
 
21
 
22
- canny_detector = CannyDetector()
23
- canny_image = canny_detector(image, low_threshold=100, high_threshold=200)
 
 
 
 
 
24
 
25
  controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
26
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
 
4
  from huggingface_hub import HfApi
5
  from pathlib import Path
6
  from diffusers.utils import load_image
7
+ import cv2
8
+ from PIL import Image
9
+ import numpy as np
10
 
11
  from diffusers import (
12
  ControlNetModel,
 
20
  image = load_image(
21
  "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
22
  )
23
+ image = np.array(image)
24
 
25
+ low_threshold = 100
26
+ high_threshold = 200
27
+
28
+ image = cv2.Canny(image, low_threshold, high_threshold)
29
+ image = image[:, :, None]
30
+ image = np.concatenate([image, image, image], axis=2)
31
+ canny_image = Image.fromarray(image)
32
 
33
  controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
34
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
control_net_inpaint.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from PIL import Image
8
+ import numpy as np
9
+
10
+ from diffusers import (
11
+ ControlNetModel,
12
+ StableDiffusionControlNetPipeline,
13
+ DDIMScheduler,
14
+ )
15
+ import sys
16
+
17
+ checkpoint = sys.argv[1]
18
+
19
+
20
+ # pre-process image and mask
21
+ image = load_image("https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png").convert('RGB')
22
+ mask_image = load_image("https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png").convert("L")
23
+
24
+ # convert to float32
25
+ image = np.asarray(image, dtype=np.float32)
26
+ mask_image = np.asarray(mask_image, dtype=np.float32)
27
+
28
+ image[mask_image > 127] = -255.0
29
+ image = torch.from_numpy(image)[None].permute(0, 3, 1, 2) / 255.0
30
+
31
+ prompt = "A blue cat sitting on a park bench"
32
+
33
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
34
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
35
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
36
+ )
37
+
38
+ pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
39
+ pipe.enable_model_cpu_offload()
40
+
41
+ generator = torch.manual_seed(0)
42
+ out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image, guidance_scale=9.0).images[0]
43
+
44
+ path = os.path.join(Path.home(), "images", "aa.png")
45
+ out_image.save(path)
46
+
47
+ api = HfApi()
48
+
49
+ api.upload_file(
50
+ path_or_fileobj=path,
51
+ path_in_repo=path.split("/")[-1],
52
+ repo_id="patrickvonplaten/images",
53
+ repo_type="dataset",
54
+ )
55
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
control_net_lineart.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from controlnet_aux import LineartDetector
8
+
9
+ from diffusers import (
10
+ ControlNetModel,
11
+ StableDiffusionControlNetPipeline,
12
+ UniPCMultistepScheduler,
13
+ )
14
+ import sys
15
+
16
+ checkpoint = sys.argv[1]
17
+
18
+ url = "https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/bag.png"
19
+ url = "https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/person_1.jpeg"
20
+ image = load_image(url)
21
+
22
+ prompt = "michael jackson concert"
23
+
24
+ processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
25
+ image = processor(image)
26
+ image.save("/home/patrick/images/check.png")
27
+
28
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
29
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
30
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
31
+ )
32
+
33
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
34
+ pipe.enable_model_cpu_offload()
35
+
36
+ generator = torch.manual_seed(0)
37
+ out_image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0]
38
+
39
+ path = os.path.join(Path.home(), "images", "aa.png")
40
+ out_image.save(path)
41
+
42
+ api = HfApi()
43
+
44
+ api.upload_file(
45
+ path_or_fileobj=path,
46
+ path_in_repo=path.split("/")[-1],
47
+ repo_id="patrickvonplaten/images",
48
+ repo_type="dataset",
49
+ )
50
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
control_net_lineart_anime.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from controlnet_aux import LineartAnimeDetector
8
+ from transformers import CLIPTextModel
9
+
10
+ from diffusers import (
11
+ ControlNetModel,
12
+ StableDiffusionControlNetPipeline,
13
+ UniPCMultistepScheduler,
14
+ )
15
+ import sys
16
+
17
+ checkpoint = sys.argv[1]
18
+
19
+ url = "https://static.wikia.nocookie.net/unanything/images/a/a0/Unnamed.png/revision/latest/scale-to-width-down/350?cb=20230326002111"
20
+ image = load_image(url)
21
+
22
+ prompt = "warrior girl"
23
+
24
+ processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
25
+ image = processor(image)
26
+ image.save("/home/patrick/images/check.png")
27
+
28
+ text_encoder = CLIPTextModel.from_pretrained("Linaqruf/anything-v3.0", subfolder="text_encoder", num_hidden_layers=11, torch_dtype=torch.float16)
29
+
30
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
31
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
32
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, text_encoder=text_encoder, torch_dtype=torch.float16
33
+ )
34
+
35
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
36
+ pipe.enable_model_cpu_offload()
37
+
38
+ generator = torch.manual_seed(33)
39
+ out_image = pipe(prompt, num_inference_steps=25, generator=generator, image=image).images[0]
40
+
41
+ path = os.path.join(Path.home(), "images", "aa.png")
42
+ out_image.save(path)
43
+
44
+ api = HfApi()
45
+
46
+ api.upload_file(
47
+ path_or_fileobj=path,
48
+ path_in_repo=path.split("/")[-1],
49
+ repo_id="patrickvonplaten/images",
50
+ repo_type="dataset",
51
+ )
52
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
control_net_normalbae.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from controlnet_aux import NormalBaeDetector
8
+
9
+ from diffusers import (
10
+ ControlNetModel,
11
+ StableDiffusionControlNetPipeline,
12
+ UniPCMultistepScheduler,
13
+ )
14
+ import sys
15
+
16
+ checkpoint = sys.argv[1]
17
+
18
+ url = "https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/person-leaves.png"
19
+ image = load_image(url)
20
+
21
+ prompt = "A head full of roses"
22
+
23
+
24
+ processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
25
+ image = processor(image)
26
+
27
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
28
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
29
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
30
+ )
31
+
32
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
33
+ pipe.enable_model_cpu_offload()
34
+
35
+ generator = torch.manual_seed(33)
36
+ out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image).images[0]
37
+
38
+ path = os.path.join(Path.home(), "images", "aa.png")
39
+ out_image.save(path)
40
+
41
+ api = HfApi()
42
+
43
+ api.upload_file(
44
+ path_or_fileobj=path,
45
+ path_in_repo=path.split("/")[-1],
46
+ repo_id="patrickvonplaten/images",
47
+ repo_type="dataset",
48
+ )
49
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
control_net_open_pose.py CHANGED
@@ -15,12 +15,12 @@ import sys
15
 
16
  checkpoint = sys.argv[1]
17
 
18
- image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png")
19
- prompt = "chef in the kitchen"
20
 
21
 
22
  openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
23
- image = openpose(image)
24
 
25
  controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
26
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
@@ -31,7 +31,7 @@ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
31
  pipe.enable_model_cpu_offload()
32
 
33
  generator = torch.manual_seed(33)
34
- out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image).images[0]
35
 
36
  path = os.path.join(Path.home(), "images", "aa.png")
37
  out_image.save(path)
 
15
 
16
  checkpoint = sys.argv[1]
17
 
18
+ image = load_image("https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/demo.jpg").resize((512, 512))
19
+ prompt = "The pope with sunglasses rapping with a mic"
20
 
21
 
22
  openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
23
+ image = openpose(image, hand_and_face=True)
24
 
25
  controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
26
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
 
31
  pipe.enable_model_cpu_offload()
32
 
33
  generator = torch.manual_seed(33)
34
+ out_image = pipe(prompt, num_inference_steps=35, generator=generator, image=image).images[0]
35
 
36
  path = os.path.join(Path.home(), "images", "aa.png")
37
  out_image.save(path)
control_net_pix2pix.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from PIL import Image
8
+ import numpy as np
9
+
10
+ from diffusers import (
11
+ ControlNetModel,
12
+ StableDiffusionControlNetPipeline,
13
+ UniPCMultistepScheduler,
14
+ )
15
+ import sys
16
+
17
+ checkpoint = sys.argv[1]
18
+
19
+ image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-seg/resolve/main/images/house.png").convert('RGB')
20
+
21
+ prompt = "make it on fire"
22
+
23
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
24
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
25
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
26
+ )
27
+
28
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
29
+ pipe.enable_model_cpu_offload()
30
+
31
+ generator = torch.manual_seed(0)
32
+ out_image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0]
33
+
34
+ path = os.path.join(Path.home(), "images", "aa.png")
35
+ out_image.save(path)
36
+
37
+ api = HfApi()
38
+
39
+ api.upload_file(
40
+ path_or_fileobj=path,
41
+ path_in_repo=path.split("/")[-1],
42
+ repo_id="patrickvonplaten/images",
43
+ repo_type="dataset",
44
+ )
45
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
control_net_shuffle.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from controlnet_aux import ContentShuffleDetector
8
+
9
+ from diffusers import (
10
+ ControlNetModel,
11
+ StableDiffusionControlNetPipeline,
12
+ UniPCMultistepScheduler,
13
+ )
14
+ import sys
15
+
16
+ checkpoint = sys.argv[1]
17
+
18
+ url = "https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/city.jpg"
19
+ image = load_image(url)
20
+
21
+ prompt = "New York"
22
+
23
+
24
+ processor = ContentShuffleDetector()
25
+ image = processor(image)
26
+
27
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
28
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
29
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
30
+ )
31
+
32
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
33
+ pipe.enable_model_cpu_offload()
34
+
35
+ generator = torch.manual_seed(33)
36
+ out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image).images[0]
37
+
38
+ path = os.path.join(Path.home(), "images", "aa.png")
39
+ out_image.save(path)
40
+
41
+ api = HfApi()
42
+
43
+ api.upload_file(
44
+ path_or_fileobj=path,
45
+ path_in_repo=path.split("/")[-1],
46
+ repo_id="patrickvonplaten/images",
47
+ repo_type="dataset",
48
+ )
49
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
control_net_soft_edge.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from PIL import Image
8
+ import numpy as np
9
+ from controlnet_aux import PidiNetDetector, HEDdetector
10
+
11
+ from diffusers import (
12
+ ControlNetModel,
13
+ StableDiffusionControlNetPipeline,
14
+ UniPCMultistepScheduler,
15
+ )
16
+ import sys
17
+
18
+ checkpoint = sys.argv[1]
19
+
20
+ image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-mlsd/resolve/main/images/room.png")
21
+
22
+ prompt = "royal chamber with fancy bed"
23
+
24
+ processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
25
+ processor = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
26
+ image = processor(image, safe=True)
27
+
28
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
29
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
30
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
31
+ )
32
+
33
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
34
+ pipe.enable_model_cpu_offload()
35
+
36
+ generator = torch.manual_seed(0)
37
+ out_image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0]
38
+
39
+ path = os.path.join(Path.home(), "images", "aa.png")
40
+ out_image.save(path)
41
+
42
+ api = HfApi()
43
+
44
+ api.upload_file(
45
+ path_or_fileobj=path,
46
+ path_in_repo=path.split("/")[-1],
47
+ repo_id="patrickvonplaten/images",
48
+ repo_type="dataset",
49
+ )
50
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
run_local.py CHANGED
@@ -1,13 +1,15 @@
1
  #!/usr/bin/env python3
2
- from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler
3
- from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
4
  import time
5
  import os
6
  from huggingface_hub import HfApi
7
- from compel import Compel
8
  import torch
9
  import sys
10
  from pathlib import Path
 
 
 
11
 
12
  path = sys.argv[1]
13
 
@@ -15,26 +17,34 @@ api = HfApi()
15
  start_time = time.time()
16
  #pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto")
17
  #pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
18
- pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
19
- pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
20
 
21
- compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
22
 
23
 
24
  pipe = pipe.to("cuda")
25
 
26
- prompt = "a highly realistic photo of green turtle"
27
 
28
- prompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"]
29
 
30
- prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts])
31
 
32
- generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])]
33
- images = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=15).images
 
 
 
 
 
 
 
 
34
 
35
  print("Time", time.time() - start_time)
36
 
37
- for i, image in enumerate(image):
38
  path = os.path.join(Path.home(), "images", f"aa_{i}.png")
39
  image.save(path)
40
 
 
1
  #!/usr/bin/env python3
2
+ from diffusers import StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler
 
3
  import time
4
  import os
5
  from huggingface_hub import HfApi
6
+ # from compel import Compel
7
  import torch
8
  import sys
9
  from pathlib import Path
10
+ import requests
11
+ from PIL import Image
12
+ from io import BytesIO
13
 
14
  path = sys.argv[1]
15
 
 
17
  start_time = time.time()
18
  #pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto")
19
  #pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
20
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None)
21
+ pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
22
 
23
+ # compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
24
 
25
 
26
  pipe = pipe.to("cuda")
27
 
28
+ prompt = "ghibli style, a fantasy landscape with castles"
29
 
30
+ # rompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"]
31
 
32
+ # prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts])
33
 
34
+ # generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])]
35
+ #
36
+ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
37
+
38
+ response = requests.get(url)
39
+ image = Image.open(BytesIO(response.content)).convert("RGB")
40
+ image.thumbnail((768, 768))
41
+
42
+ generator = torch.Generator(device="cpu").manual_seed(0)
43
+ images = pipe(prompt=prompt, image=image, generator=generator, strength=0.75, num_inference_steps=30).images
44
 
45
  print("Time", time.time() - start_time)
46
 
47
+ for i, image in enumerate(images):
48
  path = os.path.join(Path.home(), "images", f"aa_{i}.png")
49
  image.save(path)
50