#!/usr/bin/env python3 from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler import time import os from huggingface_hub import HfApi import torch import sys from pathlib import Path path = sys.argv[1] api = HfApi() start_time = time.time() #pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto") #pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "a highly realistic photo of green turtle" generator = torch.Generator(device="cuda").manual_seed(0) image = pipe(prompt, generator=generator, num_inference_steps=25).images[0] print("Time", time.time() - start_time) path = os.path.join(Path.home(), "images", "aa.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")