a2c-AntBulletEnv-v0 / config.json
digitalconcretejungle's picture
Initial commit
a8a07d6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a49d38d8280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a49d38d8310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a49d38d83a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a49d38d8430>", "_build": "<function ActorCriticPolicy._build at 0x7a49d38d84c0>", "forward": "<function ActorCriticPolicy.forward at 0x7a49d38d8550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a49d38d85e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a49d38d8670>", "_predict": "<function ActorCriticPolicy._predict at 0x7a49d38d8700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a49d38d8790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a49d38d8820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a49d38d88b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a49d38d2580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690638459823192436, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFeSlj/Otwq/J8g4Pr7E7j+pTuG/FEuhP9KdAb5RzrG/HqR+P5S62j/bJ5w/J7Jnv/xGjj/ys5Q+NhoZP3hN7DyXNMs+6aT4vk9LEr+kUyG+J0e3PRGvhz9XFdk/nAj2vEZ/Dz8pPpc+sXoeP5DHh7+tttw/3TJCv0ImhL144No/zETwvzN3wD9ZJQu/hPi2v4SzpD+iu0W8KimqP9CmG7/0nk8/Pm5fv4TT2D4LZRm/sls+v95mLMA7cKy/J/XoPjyc1D6n470+B6jKP9ozXL9Gfw8/KT6XPrF6Hj+Qx4e/+CIePwHSYr8uu36+N1YxP/UssL8sPaG/sJKqPWKkwr4BhtS/53m8PdzLTj+Mgtk+PPiNP+FvOD/+cJy+Dge0P9CFST8pXIFAAMDUPpE2w76GUt6+SKLtPzF52T+4SW29Wlrkvyk+lz7lw86/F1VxPzLgqj/POLS9JokGP0H4yj+lSIu/d8S1PyGwCL8qJ5q/i9KQPl23yz8K8Lw/G3puvinwGj/ur7w+4EUZP4D+ID0ya+i9px2WvyG4sr84eT4+gnxGPg5fAj9+Odk/VRUpvUZ/Dz8pPpc+sXoeP5DHh7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADtk/i0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAj0v7OwAAAACNU/W/AAAAAAGQ7zwAAAAAhMzzPwAAAACRRKI8AAAAADLj+T8AAAAATIp1PQAAAADE0eu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzg0itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGabhzYAAAAAW2jcvwAAAADjrbW9AAAAAGK0+z8AAAAArTjHuwAAAAAUhuc/AAAAAI1pWTwAAAAAOSnivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN/hlbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA0mU89AAAAABAcAMAAAAAAxY4bPQAAAADwduU/AAAAAMdIYr0AAAAAiqjxPwAAAACQRJ+8AAAAAK4IAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCdFm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6yHqPQAAAAA9zeC/AAAAAGwYqz0AAAAAFAnvPwAAAAAvY3W9AAAAAFVs+D8AAAAAOZlUPQAAAADhMNm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmrTySV4X6MAWyUTegDjAF0lEdAqTxTMkhRqHV9lChoBkdAmJKGGM4tH2gHTegDaAhHQKk8XOlfqot1fZQoaAZHQJoyqdAgPmRoB03oA2gIR0CpPgJtaY/ndX2UKGgGR0CaK2txdY4iaAdN6ANoCEdAqUQwldC3PXV9lChoBkdAnDxFclgMMWgHTegDaAhHQKlJhaEBbOh1fZQoaAZHQJ12FJK8L8doB03oA2gIR0CpSY93bEgodX2UKGgGR0CdhfNIsiB5aAdN6ANoCEdAqUszFGXoknV9lChoBkdAneZRRVIZqGgHTegDaAhHQKlRUgxrSE11fZQoaAZHQJ1nuQRwqAloB03oA2gIR0CpVp71qWTpdX2UKGgGR0CePzSm65G0aAdN6ANoCEdAqVaohB7eEnV9lChoBkdAnfwyWzF+/mgHTegDaAhHQKlYTcTrVvx1fZQoaAZHQJuOvs5XEIhoB03oA2gIR0CpXofHo5ggdX2UKGgGR0Cbef0xubZwaAdN6ANoCEdAqWPYM8YAKnV9lChoBkdAl25IwRGtp2gHTegDaAhHQKlj4gIQe3h1fZQoaAZHQJrkUc1fmcRoB03oA2gIR0CpZYYWk8A8dX2UKGgGR0CeM+hL5AQhaAdN6ANoCEdAqWumfVZs9HV9lChoBkdAnUhBz3h4uGgHTegDaAhHQKlw+/wAlv91fZQoaAZHQJ0JML1EmY1oB03oA2gIR0CpcQWicoYvdX2UKGgGR0CdILDifg76aAdN6ANoCEdAqXKuSB9TgnV9lChoBkdAni12KhtcfWgHTegDaAhHQKl43BDXvph1fZQoaAZHQJtO2EDhcZ9oB03oA2gIR0CpfjEzXSSedX2UKGgGR0Ccnv3FUADJaAdN6ANoCEdAqX46vq1PWXV9lChoBkdAmYbP1ct5EGgHTegDaAhHQKl/31p0wJx1fZQoaAZHQJbkv9n9NvhoB03oA2gIR0CphgQhGH58dX2UKGgGR0CWg3FqBVdYaAdN6ANoCEdAqYtZz/6wdXV9lChoBkdAltnGszVMEmgHTegDaAhHQKmLY38XN1R1fZQoaAZHQJcuvX4CZF5oB03oA2gIR0CpjQzd1uBMdX2UKGgGR0CUdOtT1kDqaAdN6ANoCEdAqZM5lSS/03V9lChoBkdAmDlPq1PWQWgHTegDaAhHQKmYjHskY411fZQoaAZHQJhYsjX4CZFoB03oA2gIR0CpmJYKhL5AdX2UKGgGR0Cak22Ifr8jaAdN6ANoCEdAqZo5f6XSjXV9lChoBkdAnCc+zQeFL2gHTegDaAhHQKmgViNsFdN1fZQoaAZHQJyeBflZHNJoB03oA2gIR0CppbEn1FpgdX2UKGgGR0Cb1S9EkSmJaAdN6ANoCEdAqaW7Bl+VknV9lChoBkdAnK8x59mYjWgHTegDaAhHQKmnZm03OwB1fZQoaAZHQJrHhdonKGNoB03oA2gIR0CprYqoAGSqdX2UKGgGR0CUf6chkiD/aAdN6ANoCEdAqbLasZHd43V9lChoBkdAljViJ40Mw2gHTegDaAhHQKmy5EDyOJd1fZQoaAZHQJydHzMA3kxoB03oA2gIR0CptIbdadMCdX2UKGgGR0CahguxbB42aAdN6ANoCEdAqbqkyvcJt3V9lChoBkdAl7cHQY1pCmgHTegDaAhHQKm/+9XcQAd1fZQoaAZHQJi34UlAu7JoB03oA2gIR0CpwAVie/YbdX2UKGgGR0CYqKso2GZeaAdN6ANoCEdAqcGplg+hXnV9lChoBkdAm4WiTINmUWgHTegDaAhHQKnHvqJuVHF1fZQoaAZHQJtDSSGJvYRoB03oA2gIR0CpzQxAB1cMdX2UKGgGR0CWnUhRZU1iaAdN6ANoCEdAqc0V5t3wC3V9lChoBkdAmu+NATqSo2gHTegDaAhHQKnOt1schkl1fZQoaAZHQJXZh/lQuVZoB03oA2gIR0Cp1MnaFmFrdX2UKGgGR0CY0dNjbzshaAdN6ANoCEdAqdoYZ88cMnV9lChoBkdAmZVOzyBkJGgHTegDaAhHQKnaInx8UmF1fZQoaAZHQJds68K5TZRoB03oA2gIR0Cp28laB7NTdX2UKGgGR0CQwrQeV9ncaAdN6ANoCEdAqeHn+IdlunV9lChoBkdAkJ1DBEa2nmgHTegDaAhHQKnnOg2606Z1fZQoaAZHQJWlrXlKbrloB03oA2gIR0Cp50OIyj59dX2UKGgGR0CVdDO09hZyaAdN6ANoCEdAqejnJ9y93HV9lChoBkdAkxgFVghKUWgHTegDaAhHQKnvGYwZflZ1fZQoaAZHQJN707KaG6BoB03oA2gIR0Cp9Hkq+ajOdX2UKGgGR0CSdI8uBczJaAdN6ANoCEdAqfSC46Oo53V9lChoBkdAlYBspgCwKWgHTegDaAhHQKn2I+Yc/+t1fZQoaAZHQJBvh6/qPfdoB03oA2gIR0Cp/EfLTx5LdX2UKGgGR0CRjlfsNUfgaAdN6ANoCEdAqgGSASWZ7XV9lChoBkdAkfeMs189fWgHTegDaAhHQKoBnEjxCpp1fZQoaAZHQJIe/2ys0YVoB03oA2gIR0CqAz86FM7EdX2UKGgGR0CU07nuy/sWaAdN6ANoCEdAqglbTjNpunV9lChoBkdAlG7w7gbZOGgHTegDaAhHQKoOpS1E3Kl1fZQoaAZHQJY7YvTPSlZoB03oA2gIR0CqDq7JOnEVdX2UKGgGR0CU50G/etSyaAdN6ANoCEdAqhBPhKlHjXV9lChoBkdAlT9O1SflIWgHTegDaAhHQKoWaMl1KXh1fZQoaAZHQJVfKGXXyy5oB03oA2gIR0CqG7OMuOCHdX2UKGgGR0CV+ZUcGTs6aAdN6ANoCEdAqhu9OO8013V9lChoBkdAl4ejGPxQSGgHTegDaAhHQKodXrOZ9eB1fZQoaAZHQJRde/vfCQ9oB03oA2gIR0CqI42PtD2KdX2UKGgGR0CTYDuW8h9taAdN6ANoCEdAqijgNPP9k3V9lChoBkdAlGzCLMs6JmgHTegDaAhHQKoo6ku6ErZ1fZQoaAZHQJGcUT4+KTBoB03oA2gIR0CqKpDTSb6QdX2UKGgGR0CQx/Rjz7MxaAdN6ANoCEdAqjC3kvK2a3V9lChoBkdAkcAPlMh5gWgHTegDaAhHQKo2FmEoOQR1fZQoaAZHQJRGzdHlOoJoB03oA2gIR0CqNiCmEXchdX2UKGgGR0CNVCi6g/TtaAdN6ANoCEdAqjfK+6Ae73V9lChoBkdAkiZ0163RX2gHTegDaAhHQKo+Bq4YrJ91fZQoaAZHQJK04aqCHypoB03oA2gIR0CqQ1ltTDO1dX2UKGgGR0CPVaVC5VfeaAdN6ANoCEdAqkNjPa+N+HV9lChoBkdAkWZViKBNEmgHTegDaAhHQKpFB0DEFW51fZQoaAZHQI3J46ltTDRoB03oA2gIR0CqSyaSLZSOdX2UKGgGR0CH/wapgkTpaAdN6ANoCEdAqlCO0Re1KHV9lChoBkdAjQdZ/kNnXmgHTegDaAhHQKpQmKO1fE51fZQoaAZHQIsZ13B55Z9oB03oA2gIR0CqUkGx2SuAdX2UKGgGR0CRBZK3/givaAdN6ANoCEdAqlhpZdOZcHV9lChoBkdAkFk6cd5prWgHTegDaAhHQKpdvPqs2eh1fZQoaAZHQJFST4REnb9oB03oA2gIR0CqXcacy31BdX2UKGgGR0CQfy4mCyyEaAdN6ANoCEdAql9scIZ62XV9lChoBkdAkpkCtFKChGgHTegDaAhHQKpljatcOb11fZQoaAZHQJKE86S1Vo9oB03oA2gIR0CqauoybhFWdX2UKGgGR0CTBGyvLX+VaAdN6ANoCEdAqmrzzwtrbnV9lChoBkdAlST336AOKGgHTegDaAhHQKpsmRHww0x1fZQoaAZHQJX0kmkWRA9oB03oA2gIR0CqcriyyD7JdX2UKGgGR0CWiYlXA/LUaAdN6ANoCEdAqngIN5MURHV9lChoBkdAlo557b+LnGgHTegDaAhHQKp4EiBXjlx1fZQoaAZHQJSnrq6e5FxoB03oA2gIR0CqebRV6u4gdX2UKGgGR0CWHQuaWom5aAdN6ANoCEdAqn/bn9vS+nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}