digitalconcretejungle commited on
Commit
a857e7a
·
1 Parent(s): 99251e8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.74 +/- 1.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3296a3a1111320e46f91e4264986613bde80f1dfbbc1fe8f74351ef82842be2
3
+ size 108157
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a49d38d89d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7a49d38d26c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1690641903560267343,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL0RLO2NIwL+RTcO//mhCv3h7rr/GKKA+ZKEhvoMUNT/tqRs/j9TPPdZu+r0cQMq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]]",
38
+ "desired_goal": "[[ 0.0031016 -1.5022091 -1.5258046 ]\n [-0.75941455 -1.363143 0.31281108]\n [-0.15784222 0.70734423 0.6080616 ]\n [ 0.10147964 -0.12228172 -0.39502037]]",
39
+ "observation": "[[ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALNrQvdSWabx3SXA+rlBSvR7zODwluZA+v+KkvYn0Fb46IJk+osPTvaC26T1Zv5g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.10197863 -0.01425715 0.23465525]\n [-0.05134647 0.01128843 0.28266254]\n [-0.08051061 -0.14644064 0.299074 ]\n [-0.10340048 0.11411786 0.29833487]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImIV2TrNAAcCUhpRSlIwBbJRLMowBdJRHQKTmkIX0oSd1fZQoaAZoCWgPQwhzuFZ72KsCwJSGlFKUaBVLMmgWR0Ck5lEqlP8AdX2UKGgGaAloD0MIONpxw+8GFMCUhpRSlGgVSzJoFkdApOYSCOFQEnV9lChoBmgJaA9DCG9+w0SD9AHAlIaUUpRoFUsyaBZHQKTl0xSpBHF1fZQoaAZoCWgPQwgmNEksKYcXwJSGlFKUaBVLMmgWR0Ck57qpT/ACdX2UKGgGaAloD0MIA7StZp2REsCUhpRSlGgVSzJoFkdApOd7JlrdnHV9lChoBmgJaA9DCKdYNQhzu/y/lIaUUpRoFUsyaBZHQKTnO/Y8Md91fZQoaAZoCWgPQwjDKXPzjQgAwJSGlFKUaBVLMmgWR0Ck5vz238XOdX2UKGgGaAloD0MIIEYIjzYuDMCUhpRSlGgVSzJoFkdApOjjfm9xqHV9lChoBmgJaA9DCKg1zTtOcQfAlIaUUpRoFUsyaBZHQKTopAOavzR1fZQoaAZoCWgPQwiHvyZr1OMLwJSGlFKUaBVLMmgWR0Ck6GTvAoG6dX2UKGgGaAloD0MIByeiX1ufAcCUhpRSlGgVSzJoFkdApOgmBH09Q3V9lChoBmgJaA9DCIrNx7WhUhPAlIaUUpRoFUsyaBZHQKTqDc6eXiR1fZQoaAZoCWgPQwjrNT0oKEUBwJSGlFKUaBVLMmgWR0Ck6c5Z0SyudX2UKGgGaAloD0MI5iSUvhAiGMCUhpRSlGgVSzJoFkdApOmPK6nR9nV9lChoBmgJaA9DCBvaAGxABBDAlIaUUpRoFUsyaBZHQKTpUEEkjX51fZQoaAZoCWgPQwgva2KBr2gDwJSGlFKUaBVLMmgWR0Ck6zidrftQdX2UKGgGaAloD0MIwy6KHvi4BcCUhpRSlGgVSzJoFkdApOr5NEgGKXV9lChoBmgJaA9DCDLohNBBl/6/lIaUUpRoFUsyaBZHQKTqujPfKp11fZQoaAZoCWgPQwh2Gf7TDXQEwJSGlFKUaBVLMmgWR0Ck6ntGViWndX2UKGgGaAloD0MIj1IJT+j1/7+UhpRSlGgVSzJoFkdApOxmNm16V3V9lChoBmgJaA9DCEw3iUFg5ei/lIaUUpRoFUsyaBZHQKTsJschkiF1fZQoaAZoCWgPQwiDvvT258IBwJSGlFKUaBVLMmgWR0Ck6+epn6EbdX2UKGgGaAloD0MItmeWBKjJB8CUhpRSlGgVSzJoFkdApOuoqgAZKnV9lChoBmgJaA9DCPm9TX/2o/y/lIaUUpRoFUsyaBZHQKTtkjlgc951fZQoaAZoCWgPQwgPR1fp7vr6v5SGlFKUaBVLMmgWR0Ck7VK2rn1WdX2UKGgGaAloD0MImzv6X64lAsCUhpRSlGgVSzJoFkdApO0TfJmuknV9lChoBmgJaA9DCGRbBpylZAXAlIaUUpRoFUsyaBZHQKTs1IT4+KV1fZQoaAZoCWgPQwgdPX5v078BwJSGlFKUaBVLMmgWR0Ck7rp6Y3NtdX2UKGgGaAloD0MILLZJRWMtFcCUhpRSlGgVSzJoFkdApO567/XGwXV9lChoBmgJaA9DCDv7yoP0BBTAlIaUUpRoFUsyaBZHQKTuO7/4qPR1fZQoaAZoCWgPQwh7v9GOG14AwJSGlFKUaBVLMmgWR0Ck7fzZpSJkdX2UKGgGaAloD0MIaD7nbtdbEMCUhpRSlGgVSzJoFkdApO/ovrWy1XV9lChoBmgJaA9DCHpQUIpWjgHAlIaUUpRoFUsyaBZHQKTvqU8FINF1fZQoaAZoCWgPQwgwoYLDC6L7v5SGlFKUaBVLMmgWR0Ck72oXTEzgdX2UKGgGaAloD0MIlstG5/xUAMCUhpRSlGgVSzJoFkdApO8rJ0W/J3V9lChoBmgJaA9DCAIrhxbZLgHAlIaUUpRoFUsyaBZHQKTxFBInSfF1fZQoaAZoCWgPQwhTsTGvI04LwJSGlFKUaBVLMmgWR0Ck8NSI55qudX2UKGgGaAloD0MIGaw41Vq4C8CUhpRSlGgVSzJoFkdApPCVXxOLznV9lChoBmgJaA9DCEK1wYnoNw3AlIaUUpRoFUsyaBZHQKTwVmknCwd1fZQoaAZoCWgPQwiYhXZOswAEwJSGlFKUaBVLMmgWR0Ck8j5OJtSAdX2UKGgGaAloD0MI/WZiuhCr+7+UhpRSlGgVSzJoFkdApPH+3F1jiHV9lChoBmgJaA9DCEOQgxJmmgDAlIaUUpRoFUsyaBZHQKTxv7sOXmh1fZQoaAZoCWgPQwjaci7FVSUDwJSGlFKUaBVLMmgWR0Ck8YDHfdhzdX2UKGgGaAloD0MI3J4gsd19/7+UhpRSlGgVSzJoFkdApPNooCuEEnV9lChoBmgJaA9DCFuaWyGsRhbAlIaUUpRoFUsyaBZHQKTzKS6lLvl1fZQoaAZoCWgPQwh0RSkhWJUDwJSGlFKUaBVLMmgWR0Ck8un+ZPVNdX2UKGgGaAloD0MIpgwc0NJ1AsCUhpRSlGgVSzJoFkdApPKrHp8neHV9lChoBmgJaA9DCDRLAtTUsgPAlIaUUpRoFUsyaBZHQKT0k31BdD91fZQoaAZoCWgPQwhmh/iHLb0JwJSGlFKUaBVLMmgWR0Ck9FQQDmr9dX2UKGgGaAloD0MI4fCCiNRUCsCUhpRSlGgVSzJoFkdApPQU0aZQYXV9lChoBmgJaA9DCBsTYi6p2vK/lIaUUpRoFUsyaBZHQKTz1eD3/Px1fZQoaAZoCWgPQwhgAUwZOMACwJSGlFKUaBVLMmgWR0Ck9byf16E8dX2UKGgGaAloD0MIYAFMGTigAsCUhpRSlGgVSzJoFkdApPV9CgK4QXV9lChoBmgJaA9DCDiCVIodjQXAlIaUUpRoFUsyaBZHQKT1Pfa6BiF1fZQoaAZoCWgPQwj8GHPXEpIIwJSGlFKUaBVLMmgWR0Ck9P8OskprdX2UKGgGaAloD0MItp4hHLMs/b+UhpRSlGgVSzJoFkdApPboAjps43V9lChoBmgJaA9DCAO0rWadkQzAlIaUUpRoFUsyaBZHQKT2qHdoFmp1fZQoaAZoCWgPQwinBS/6CrIIwJSGlFKUaBVLMmgWR0Ck9mlYU34sdX2UKGgGaAloD0MIyNEcWfmFAMCUhpRSlGgVSzJoFkdApPYqZQYUFnV9lChoBmgJaA9DCEnzx7Q2bQjAlIaUUpRoFUsyaBZHQKT4EtGus911fZQoaAZoCWgPQwgQW3o01TMBwJSGlFKUaBVLMmgWR0Ck99Ncv/R3dX2UKGgGaAloD0MIt7jGZ7KfCMCUhpRSlGgVSzJoFkdApPeUH+qBE3V9lChoBmgJaA9DCMBC5sqgGvi/lIaUUpRoFUsyaBZHQKT3VTrmhdt1fZQoaAZoCWgPQwjb+BOVDesCwJSGlFKUaBVLMmgWR0Ck+TypzcREdX2UKGgGaAloD0MIFeY9zjTh9L+UhpRSlGgVSzJoFkdApPj9NlAeJnV9lChoBmgJaA9DCKZIvhJIqQbAlIaUUpRoFUsyaBZHQKT4vfUnXup1fZQoaAZoCWgPQwg9nStKCeEAwJSGlFKUaBVLMmgWR0Ck+H79If8udX2UKGgGaAloD0MIrroO1ZREAsCUhpRSlGgVSzJoFkdApPpoZCOWB3V9lChoBmgJaA9DCCUEq+rl9wvAlIaUUpRoFUsyaBZHQKT6KPHT7VJ1fZQoaAZoCWgPQwjqPCr+7wj7v5SGlFKUaBVLMmgWR0Ck+enSv1UVdX2UKGgGaAloD0MIi+HqAIg7+r+UhpRSlGgVSzJoFkdApPmq4SYgJXV9lChoBmgJaA9DCDwW26Si8QzAlIaUUpRoFUsyaBZHQKT7kM5OrQx1fZQoaAZoCWgPQwj3P8BatWsAwJSGlFKUaBVLMmgWR0Ck+1EtVaOhdX2UKGgGaAloD0MI+mNam8Y2/7+UhpRSlGgVSzJoFkdApPsSBf8dgnV9lChoBmgJaA9DCE6bcRqiqgDAlIaUUpRoFUsyaBZHQKT60xDb8FZ1fZQoaAZoCWgPQwgMOiF00KXrv5SGlFKUaBVLMmgWR0Ck/Nt4A0bcdX2UKGgGaAloD0MIdLM/UG77A8CUhpRSlGgVSzJoFkdApPyb/XGwR3V9lChoBmgJaA9DCH+/mC1ZlQXAlIaUUpRoFUsyaBZHQKT8XaY/mkp1fZQoaAZoCWgPQwhUdCSX/5ACwJSGlFKUaBVLMmgWR0Ck/B6yrxRVdX2UKGgGaAloD0MIkjzX9+Gg+7+UhpRSlGgVSzJoFkdApP4HYe1a4nV9lChoBmgJaA9DCKj/rPnxl/q/lIaUUpRoFUsyaBZHQKT9x+y7f511fZQoaAZoCWgPQwihvI+jORICwJSGlFKUaBVLMmgWR0Ck/YiuuA7QdX2UKGgGaAloD0MIg9+GGK+5+r+UhpRSlGgVSzJoFkdApP1JpQDV6XV9lChoBmgJaA9DCNxlv+505+y/lIaUUpRoFUsyaBZHQKT/LBguyu91fZQoaAZoCWgPQwgXR+UmaukGwJSGlFKUaBVLMmgWR0Ck/uygf2bodX2UKGgGaAloD0MIhGVs6Gb/9L+UhpRSlGgVSzJoFkdApP6ta8pTdnV9lChoBmgJaA9DCMLexJCc7APAlIaUUpRoFUsyaBZHQKT+bn13+uN1fZQoaAZoCWgPQwiKHvgYrBgAwJSGlFKUaBVLMmgWR0ClAGCk43m3dX2UKGgGaAloD0MIhzO/mgMkDMCUhpRSlGgVSzJoFkdApQAhMewLVnV9lChoBmgJaA9DCED4UKIlz/q/lIaUUpRoFUsyaBZHQKT/4g9vCMx1fZQoaAZoCWgPQwgW31D4bB0DwJSGlFKUaBVLMmgWR0Ck/6L30wrUdX2UKGgGaAloD0MI9OFZgozACcCUhpRSlGgVSzJoFkdApQGFfXwsoXV9lChoBmgJaA9DCBnFckuroQjAlIaUUpRoFUsyaBZHQKUBRhfjS5R1fZQoaAZoCWgPQwheDybFx6flv5SGlFKUaBVLMmgWR0ClAQcFQl8gdX2UKGgGaAloD0MImODUB5K3+r+UhpRSlGgVSzJoFkdApQDH93r2QHV9lChoBmgJaA9DCCMRGsHGtfG/lIaUUpRoFUsyaBZHQKUCqxfv4M51fZQoaAZoCWgPQwgn+RG/Yk0FwJSGlFKUaBVLMmgWR0ClAmuWKMvRdX2UKGgGaAloD0MI8BXdek0PBcCUhpRSlGgVSzJoFkdApQIscOskp3V9lChoBmgJaA9DCOxP4nMnqBDAlIaUUpRoFUsyaBZHQKUB7WNFSbZ1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03441d4c13550eba9e4dd4795b74c63ecdb6716584c532a2e636e99ce1d138e5
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74bfbcd362f283ec17a4ba6909fbaee7f1a510cd62e67ae430a8196decc3cbe2
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a49d38d89d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a49d38d26c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690641903560267343, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/mZ28Ptw7FrtdEhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL0RLO2NIwL+RTcO//mhCv3h7rr/GKKA+ZKEhvoMUNT/tqRs/j9TPPdZu+r0cQMq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuZnbw+3DsWu10SEz/hGzI5rLZYus0JLTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]\n [ 0.36838987 -0.00229239 0.57449895]]", "desired_goal": "[[ 0.0031016 -1.5022091 -1.5258046 ]\n [-0.75941455 -1.363143 0.31281108]\n [-0.15784222 0.70734423 0.6080616 ]\n [ 0.10147964 -0.12228172 -0.39502037]]", "observation": "[[ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]\n [ 3.6838987e-01 -2.2923863e-03 5.7449895e-01 1.6985789e-04\n -8.2669663e-04 2.6403547e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALNrQvdSWabx3SXA+rlBSvR7zODwluZA+v+KkvYn0Fb46IJk+osPTvaC26T1Zv5g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10197863 -0.01425715 0.23465525]\n [-0.05134647 0.01128843 0.28266254]\n [-0.08051061 -0.14644064 0.299074 ]\n [-0.10340048 0.11411786 0.29833487]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImIV2TrNAAcCUhpRSlIwBbJRLMowBdJRHQKTmkIX0oSd1fZQoaAZoCWgPQwhzuFZ72KsCwJSGlFKUaBVLMmgWR0Ck5lEqlP8AdX2UKGgGaAloD0MIONpxw+8GFMCUhpRSlGgVSzJoFkdApOYSCOFQEnV9lChoBmgJaA9DCG9+w0SD9AHAlIaUUpRoFUsyaBZHQKTl0xSpBHF1fZQoaAZoCWgPQwgmNEksKYcXwJSGlFKUaBVLMmgWR0Ck57qpT/ACdX2UKGgGaAloD0MIA7StZp2REsCUhpRSlGgVSzJoFkdApOd7JlrdnHV9lChoBmgJaA9DCKdYNQhzu/y/lIaUUpRoFUsyaBZHQKTnO/Y8Md91fZQoaAZoCWgPQwjDKXPzjQgAwJSGlFKUaBVLMmgWR0Ck5vz238XOdX2UKGgGaAloD0MIIEYIjzYuDMCUhpRSlGgVSzJoFkdApOjjfm9xqHV9lChoBmgJaA9DCKg1zTtOcQfAlIaUUpRoFUsyaBZHQKTopAOavzR1fZQoaAZoCWgPQwiHvyZr1OMLwJSGlFKUaBVLMmgWR0Ck6GTvAoG6dX2UKGgGaAloD0MIByeiX1ufAcCUhpRSlGgVSzJoFkdApOgmBH09Q3V9lChoBmgJaA9DCIrNx7WhUhPAlIaUUpRoFUsyaBZHQKTqDc6eXiR1fZQoaAZoCWgPQwjrNT0oKEUBwJSGlFKUaBVLMmgWR0Ck6c5Z0SyudX2UKGgGaAloD0MI5iSUvhAiGMCUhpRSlGgVSzJoFkdApOmPK6nR9nV9lChoBmgJaA9DCBvaAGxABBDAlIaUUpRoFUsyaBZHQKTpUEEkjX51fZQoaAZoCWgPQwgva2KBr2gDwJSGlFKUaBVLMmgWR0Ck6zidrftQdX2UKGgGaAloD0MIwy6KHvi4BcCUhpRSlGgVSzJoFkdApOr5NEgGKXV9lChoBmgJaA9DCDLohNBBl/6/lIaUUpRoFUsyaBZHQKTqujPfKp11fZQoaAZoCWgPQwh2Gf7TDXQEwJSGlFKUaBVLMmgWR0Ck6ntGViWndX2UKGgGaAloD0MIj1IJT+j1/7+UhpRSlGgVSzJoFkdApOxmNm16V3V9lChoBmgJaA9DCEw3iUFg5ei/lIaUUpRoFUsyaBZHQKTsJschkiF1fZQoaAZoCWgPQwiDvvT258IBwJSGlFKUaBVLMmgWR0Ck6+epn6EbdX2UKGgGaAloD0MItmeWBKjJB8CUhpRSlGgVSzJoFkdApOuoqgAZKnV9lChoBmgJaA9DCPm9TX/2o/y/lIaUUpRoFUsyaBZHQKTtkjlgc951fZQoaAZoCWgPQwgPR1fp7vr6v5SGlFKUaBVLMmgWR0Ck7VK2rn1WdX2UKGgGaAloD0MImzv6X64lAsCUhpRSlGgVSzJoFkdApO0TfJmuknV9lChoBmgJaA9DCGRbBpylZAXAlIaUUpRoFUsyaBZHQKTs1IT4+KV1fZQoaAZoCWgPQwgdPX5v078BwJSGlFKUaBVLMmgWR0Ck7rp6Y3NtdX2UKGgGaAloD0MILLZJRWMtFcCUhpRSlGgVSzJoFkdApO567/XGwXV9lChoBmgJaA9DCDv7yoP0BBTAlIaUUpRoFUsyaBZHQKTuO7/4qPR1fZQoaAZoCWgPQwh7v9GOG14AwJSGlFKUaBVLMmgWR0Ck7fzZpSJkdX2UKGgGaAloD0MIaD7nbtdbEMCUhpRSlGgVSzJoFkdApO/ovrWy1XV9lChoBmgJaA9DCHpQUIpWjgHAlIaUUpRoFUsyaBZHQKTvqU8FINF1fZQoaAZoCWgPQwgwoYLDC6L7v5SGlFKUaBVLMmgWR0Ck72oXTEzgdX2UKGgGaAloD0MIlstG5/xUAMCUhpRSlGgVSzJoFkdApO8rJ0W/J3V9lChoBmgJaA9DCAIrhxbZLgHAlIaUUpRoFUsyaBZHQKTxFBInSfF1fZQoaAZoCWgPQwhTsTGvI04LwJSGlFKUaBVLMmgWR0Ck8NSI55qudX2UKGgGaAloD0MIGaw41Vq4C8CUhpRSlGgVSzJoFkdApPCVXxOLznV9lChoBmgJaA9DCEK1wYnoNw3AlIaUUpRoFUsyaBZHQKTwVmknCwd1fZQoaAZoCWgPQwiYhXZOswAEwJSGlFKUaBVLMmgWR0Ck8j5OJtSAdX2UKGgGaAloD0MI/WZiuhCr+7+UhpRSlGgVSzJoFkdApPH+3F1jiHV9lChoBmgJaA9DCEOQgxJmmgDAlIaUUpRoFUsyaBZHQKTxv7sOXmh1fZQoaAZoCWgPQwjaci7FVSUDwJSGlFKUaBVLMmgWR0Ck8YDHfdhzdX2UKGgGaAloD0MI3J4gsd19/7+UhpRSlGgVSzJoFkdApPNooCuEEnV9lChoBmgJaA9DCFuaWyGsRhbAlIaUUpRoFUsyaBZHQKTzKS6lLvl1fZQoaAZoCWgPQwh0RSkhWJUDwJSGlFKUaBVLMmgWR0Ck8un+ZPVNdX2UKGgGaAloD0MIpgwc0NJ1AsCUhpRSlGgVSzJoFkdApPKrHp8neHV9lChoBmgJaA9DCDRLAtTUsgPAlIaUUpRoFUsyaBZHQKT0k31BdD91fZQoaAZoCWgPQwhmh/iHLb0JwJSGlFKUaBVLMmgWR0Ck9FQQDmr9dX2UKGgGaAloD0MI4fCCiNRUCsCUhpRSlGgVSzJoFkdApPQU0aZQYXV9lChoBmgJaA9DCBsTYi6p2vK/lIaUUpRoFUsyaBZHQKTz1eD3/Px1fZQoaAZoCWgPQwhgAUwZOMACwJSGlFKUaBVLMmgWR0Ck9byf16E8dX2UKGgGaAloD0MIYAFMGTigAsCUhpRSlGgVSzJoFkdApPV9CgK4QXV9lChoBmgJaA9DCDiCVIodjQXAlIaUUpRoFUsyaBZHQKT1Pfa6BiF1fZQoaAZoCWgPQwj8GHPXEpIIwJSGlFKUaBVLMmgWR0Ck9P8OskprdX2UKGgGaAloD0MItp4hHLMs/b+UhpRSlGgVSzJoFkdApPboAjps43V9lChoBmgJaA9DCAO0rWadkQzAlIaUUpRoFUsyaBZHQKT2qHdoFmp1fZQoaAZoCWgPQwinBS/6CrIIwJSGlFKUaBVLMmgWR0Ck9mlYU34sdX2UKGgGaAloD0MIyNEcWfmFAMCUhpRSlGgVSzJoFkdApPYqZQYUFnV9lChoBmgJaA9DCEnzx7Q2bQjAlIaUUpRoFUsyaBZHQKT4EtGus911fZQoaAZoCWgPQwgQW3o01TMBwJSGlFKUaBVLMmgWR0Ck99Ncv/R3dX2UKGgGaAloD0MIt7jGZ7KfCMCUhpRSlGgVSzJoFkdApPeUH+qBE3V9lChoBmgJaA9DCMBC5sqgGvi/lIaUUpRoFUsyaBZHQKT3VTrmhdt1fZQoaAZoCWgPQwjb+BOVDesCwJSGlFKUaBVLMmgWR0Ck+TypzcREdX2UKGgGaAloD0MIFeY9zjTh9L+UhpRSlGgVSzJoFkdApPj9NlAeJnV9lChoBmgJaA9DCKZIvhJIqQbAlIaUUpRoFUsyaBZHQKT4vfUnXup1fZQoaAZoCWgPQwg9nStKCeEAwJSGlFKUaBVLMmgWR0Ck+H79If8udX2UKGgGaAloD0MIrroO1ZREAsCUhpRSlGgVSzJoFkdApPpoZCOWB3V9lChoBmgJaA9DCCUEq+rl9wvAlIaUUpRoFUsyaBZHQKT6KPHT7VJ1fZQoaAZoCWgPQwjqPCr+7wj7v5SGlFKUaBVLMmgWR0Ck+enSv1UVdX2UKGgGaAloD0MIi+HqAIg7+r+UhpRSlGgVSzJoFkdApPmq4SYgJXV9lChoBmgJaA9DCDwW26Si8QzAlIaUUpRoFUsyaBZHQKT7kM5OrQx1fZQoaAZoCWgPQwj3P8BatWsAwJSGlFKUaBVLMmgWR0Ck+1EtVaOhdX2UKGgGaAloD0MI+mNam8Y2/7+UhpRSlGgVSzJoFkdApPsSBf8dgnV9lChoBmgJaA9DCE6bcRqiqgDAlIaUUpRoFUsyaBZHQKT60xDb8FZ1fZQoaAZoCWgPQwgMOiF00KXrv5SGlFKUaBVLMmgWR0Ck/Nt4A0bcdX2UKGgGaAloD0MIdLM/UG77A8CUhpRSlGgVSzJoFkdApPyb/XGwR3V9lChoBmgJaA9DCH+/mC1ZlQXAlIaUUpRoFUsyaBZHQKT8XaY/mkp1fZQoaAZoCWgPQwhUdCSX/5ACwJSGlFKUaBVLMmgWR0Ck/B6yrxRVdX2UKGgGaAloD0MIkjzX9+Gg+7+UhpRSlGgVSzJoFkdApP4HYe1a4nV9lChoBmgJaA9DCKj/rPnxl/q/lIaUUpRoFUsyaBZHQKT9x+y7f511fZQoaAZoCWgPQwihvI+jORICwJSGlFKUaBVLMmgWR0Ck/YiuuA7QdX2UKGgGaAloD0MIg9+GGK+5+r+UhpRSlGgVSzJoFkdApP1JpQDV6XV9lChoBmgJaA9DCNxlv+505+y/lIaUUpRoFUsyaBZHQKT/LBguyu91fZQoaAZoCWgPQwgXR+UmaukGwJSGlFKUaBVLMmgWR0Ck/uygf2bodX2UKGgGaAloD0MIhGVs6Gb/9L+UhpRSlGgVSzJoFkdApP6ta8pTdnV9lChoBmgJaA9DCMLexJCc7APAlIaUUpRoFUsyaBZHQKT+bn13+uN1fZQoaAZoCWgPQwiKHvgYrBgAwJSGlFKUaBVLMmgWR0ClAGCk43m3dX2UKGgGaAloD0MIhzO/mgMkDMCUhpRSlGgVSzJoFkdApQAhMewLVnV9lChoBmgJaA9DCED4UKIlz/q/lIaUUpRoFUsyaBZHQKT/4g9vCMx1fZQoaAZoCWgPQwgW31D4bB0DwJSGlFKUaBVLMmgWR0Ck/6L30wrUdX2UKGgGaAloD0MI9OFZgozACcCUhpRSlGgVSzJoFkdApQGFfXwsoXV9lChoBmgJaA9DCBnFckuroQjAlIaUUpRoFUsyaBZHQKUBRhfjS5R1fZQoaAZoCWgPQwheDybFx6flv5SGlFKUaBVLMmgWR0ClAQcFQl8gdX2UKGgGaAloD0MImODUB5K3+r+UhpRSlGgVSzJoFkdApQDH93r2QHV9lChoBmgJaA9DCCMRGsHGtfG/lIaUUpRoFUsyaBZHQKUCqxfv4M51fZQoaAZoCWgPQwgn+RG/Yk0FwJSGlFKUaBVLMmgWR0ClAmuWKMvRdX2UKGgGaAloD0MI8BXdek0PBcCUhpRSlGgVSzJoFkdApQIscOskp3V9lChoBmgJaA9DCOxP4nMnqBDAlIaUUpRoFUsyaBZHQKUB7WNFSbZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (454 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.738652289006859, "std_reward": 0.9952067750789887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-29T15:29:56.068844"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3da9c50077579ca8a1d8554922df4078399a602902c3edcd285014c4f0a2b35b
3
+ size 2387