File size: 13,753 Bytes
f453269 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79cd38ffd120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79cd38ffd1b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79cd38ffd240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79cd38ffd2d0>", "_build": "<function ActorCriticPolicy._build at 0x79cd38ffd360>", "forward": "<function ActorCriticPolicy.forward at 0x79cd38ffd3f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79cd38ffd480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79cd38ffd510>", "_predict": "<function ActorCriticPolicy._predict at 0x79cd38ffd5a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79cd38ffd630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79cd38ffd6c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79cd38ffd750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79cd39000040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690400777069942557, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq8o7yF+9m5sjLuOpoP/LMWSeu7i4YNugAAgD8AAIA/AN99vSkQf7qookw1kJ6FME53HLpK+kW0AACAPwAAgD+ADiG9SJ+ZujtEfjpX7mo1s6jgOufmkrkAAIA/AACAP3MalL0KLb0/E4jNvrpEXLzvEwe90MlwvgAAAAAAAAAA5oA4vRSmhbpg6pM6wp+WNQ0lDDt2B6y5AACAPwAAgD8z1Ki9XJt2umUI1TgklrQzhRQturUb+bcAAIA/AACAPwZPLz755No+bQvfvTRqrb5Z65o9xjWfvQAAAAAAAAAAZpBgvEgHpLqLxcW2U1qvsa5BFjr+3+Y1AACAPwAAgD9aWjo+dbNVPqxhnb5/7F2+U18QuunIj7wAAAAAAAAAAADZ2jwpSHS6mq1hu+D1KjgQ7Yu70VwCOgAAgD8AAIA/5k6OPSLZsD+jTBc/lmKAvvHd4juMcjE+AAAAAAAAAADAa4O99ghbuoF5ALje7gezNusBO8rEFjcAAIA/AACAP808nDyuuZy6mn3WOhcPrTXAfs668m73uQAAgD8AAIA/cHSgPv0/Cz853ka+HpaSvmeUNz5lwc+9AAAAAAAAAABA9g2+UrSkuyr/G7qwpKc3wjv9PLM+1DgAAIA/AAAAAIAoTr32PGm6QKzjOiIunTTtRxC64NMDugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVXLsByS3eMAWyUTegDjAF0lEdAkcbgwwj+rHV9lChoBkdAZhaGUwBYFWgHTegDaAhHQJHH5t65Xlt1fZQoaAZHQGZXxubZvk1oB03oA2gIR0CRyz4LkS26dX2UKGgGR0BoR8I5YHPeaAdN6ANoCEdAkc6U+X7cf3V9lChoBkdAZTveAuqWC2gHTegDaAhHQJHSyz6ab4J1fZQoaAZHQGYdsqBmPHVoB03oA2gIR0CR1FEzwc5sdX2UKGgGR0BsNMr7O3UhaAdNPANoCEdAkdXMbaRISXV9lChoBkdAZxztfG+9J2gHTegDaAhHQJHdpBomG/N1fZQoaAZHQGdwgvDgqExoB03oA2gIR0CR4TNwiqyXdX2UKGgGR0BjxnVRUFSsaAdN6ANoCEdAkeVvwuuie3V9lChoBkdAYKMasp5NXmgHTegDaAhHQJHmM1YQrc11fZQoaAZHQGJKc9nscABoB03oA2gIR0CR5sEXtShrdX2UKGgGR0BiZwG6f8MvaAdN6ANoCEdAkei4wRGtp3V9lChoBkdAZgeqABkqc2gHTegDaAhHQJHo9ikO7QN1fZQoaAZHQGZB9OIqLCNoB03oA2gIR0CSBz6lLvkSdX2UKGgGR0BhtY/Z/Tb4aAdN6ANoCEdAkgi7GipNsXV9lChoBkdAYmPD7ZWaMWgHTegDaAhHQJIO0QWepXJ1fZQoaAZHQGRSqWC2+f1oB03oA2gIR0CSD9CbMHKPdX2UKGgGR0Bo9AkJKJ2uaAdN6ANoCEdAkhLmP91loXV9lChoBkdAYTKHUMG5c2gHTegDaAhHQJIWDAO8TSN1fZQoaAZHQGZ+sl9jPOZoB03oA2gIR0CSGdbpNbkfdX2UKGgGR0Bh50yrPt2LaAdN6ANoCEdAkhtB6OYIB3V9lChoBkdAYHdUWEbo82gHTegDaAhHQJIcjNbC79R1fZQoaAZHQGMyriuMdcVoB03oA2gIR0CSJXmoR7JGdX2UKGgGR0Bj5dsLv1DjaAdN6ANoCEdAkilIEbHZK3V9lChoBkdAZKZw3HaN/GgHTegDaAhHQJIs/n2ZiNN1fZQoaAZHQGU9oNEw35xoB03oA2gIR0CSLZ37UG3XdX2UKGgGR0BlnAht+CsfaAdN6ANoCEdAki4Y//vOQnV9lChoBkdAZrTyU9pyqGgHTegDaAhHQJIv0wRGtp51fZQoaAZHQGRvOiFj/dZoB03oA2gIR0CSMAekHlfadX2UKGgGR0BymTDFZPl/aAdNbQNoCEdAkkTuGsV+JHV9lChoBkdAaFhOX3QD3mgHTegDaAhHQJJLscjqv/11fZQoaAZHQGTI+pXIU8FoB03oA2gIR0CSUacyFfzCdX2UKGgGR0BlEJeJHiFTaAdN6ANoCEdAklLeMVDa5HV9lChoBkdAbstxo7FKkGgHTcYDaAhHQJJUfsv7FbV1fZQoaAZHQG897hFVktpoB03LAWgIR0CSV1VwgkkbdX2UKGgGR0BjCG7SRbKSaAdN6ANoCEdAklrb4BV+7XV9lChoBkdAcxcwAEMb32gHTYsDaAhHQJJbptpEhJR1fZQoaAZHQFFY5dnkDIRoB0vBaAhHQJJdlgF5fMR1fZQoaAZHQF/p7ngYP5JoB03oA2gIR0CSXqvOhTOxdX2UKGgGR0BoNjsyBTXKaAdN6ANoCEdAkmFJUcXFcnV9lChoBkdAZuz5sTFl1GgHTegDaAhHQJJoCH9FWn11fZQoaAZHQGWj3bEgntxoB03oA2gIR0CSa0NwiqyXdX2UKGgGR0BnJ8ZYPoV3aAdN6ANoCEdAkm9t5hScb3V9lChoBkdAcStRDTjNp2gHTZsBaAhHQJJvn4Ju2ql1fZQoaAZHQGAud7fHggpoB03oA2gIR0CScBq7AckudX2UKGgGR0BjoJwVCXyBaAdN6ANoCEdAknCbEpAlfXV9lChoBkdAaQQ+UyHmBGgHTegDaAhHQJJynqzJIUd1fZQoaAZHQGNIRlHz6JtoB03oA2gIR0CSiM7rs0HhdX2UKGgGR0BwaMp5NXYEaAdNeQJoCEdAkoqwk5ZKWnV9lChoBkdAcYiejVQQ+WgHTTECaAhHQJKLE2m51/51fZQoaAZHQEmJd7fHggpoB0u5aAhHQJKNeaLGaQV1fZQoaAZHQHLc+Zb6guhoB03BAWgIR0CSj8/NqxkedX2UKGgGR0BiQDOC5EtvaAdN6ANoCEdAkpDwOavzOHV9lChoBkdAcKzKBun/DWgHTYIDaAhHQJKTIBKcurZ1fZQoaAZHQEOX71Iy0rtoB0u4aAhHQJKUHBN21Ul1fZQoaAZHQHCERAjY7JZoB02vAWgIR0CSlh1ZTyavdX2UKGgGR0BiTv0/W1+iaAdN6ANoCEdAkpaxKYiPhnV9lChoBkdAZFkrGR3eN2gHTegDaAhHQJKZroOhCdB1fZQoaAZHQGWP1RDTjNpoB03oA2gIR0CSnqXHBDXwdX2UKGgGR0Btyr9GZuyeaAdNVQFoCEdAkp9btNSIg3V9lChoBkdAZRJwvxpco2gHTegDaAhHQJKifBP9DQZ1fZQoaAZHQHD/s63iJfpoB00IA2gIR0CSpYeZXuE3dX2UKGgGR0BlW4LkS26TaAdN6ANoCEdAkqzZWFN+LHV9lChoBkdAcLlf3N9piGgHTZgDaAhHQJKuA80UGml1fZQoaAZHQGTW1ZLZi/hoB03oA2gIR0CSsNcWj45+dX2UKGgGR0ByRCEYfnwHaAdNawJoCEdAkrGqbz9S/HV9lChoBkdAciqDJU5uImgHTeQCaAhHQJK0Deaa1Cx1fZQoaAZHQHEYQuEmICVoB02OA2gIR0CStnJQcghbdX2UKGgGR0Bfb7wjMV1waAdN6ANoCEdAksupmyxA0XV9lChoBkdAUQKasp5NXmgHS8JoCEdAksxxfOUt7XV9lChoBkdAb+NyaNMoMWgHTUcDaAhHQJLNXXWe6I51fZQoaAZHQHAGCKiwjdJoB01UAmgIR0CSzclz2exwdX2UKGgGR0BnN6q814xDaAdN6ANoCEdAks7hKL8763V9lChoBkdAcc3doWYWtWgHTVEDaAhHQJLQ1p+MIeJ1fZQoaAZHQG8DpOnEVFhoB00iAWgIR0CS0P0k4WDZdX2UKGgGR0BwkMZCOWB0aAdNCgFoCEdAktH9Frl/6XV9lChoBkdAckTuBczIm2gHTeUDaAhHQJLWALYwqRV1fZQoaAZHQHAFcyeqaPVoB00WAWgIR0CS12TmGM4tdX2UKGgGR0BJJXeFcpsoaAdLumgIR0CS2Dl0YCQtdX2UKGgGR0Bn+EtqYZ2qaAdN6ANoCEdAktliApazNXV9lChoBkdAcVxPcBU70WgHTbABaAhHQJLahp/PPcB1fZQoaAZHQG1skytV7yBoB02cAmgIR0CS2+srd30PdX2UKGgGR0BvNa1Aqur7aAdNiAFoCEdAktzLLQokRnV9lChoBkdAcbFq2jO9nWgHTS8BaAhHQJLd81hsqKB1fZQoaAZHQGMJT/6wdKdoB03oA2gIR0CS3je/Yao/dX2UKGgGR0Bhi7UAksz3aAdN6ANoCEdAkuDGLHdXT3V9lChoBkdAYWJtAs052mgHTegDaAhHQJLjTZmI0qJ1fZQoaAZHQG9QFQEZBLRoB00IAmgIR0CS41j7hvR7dX2UKGgGR0Byi6UzKs+3aAdNOAFoCEdAkuPF9KEnLXV9lChoBkdAcI+kJa7mMmgHTecBaAhHQJLkBpHqeK91fZQoaAZHQHE9nlGPPs1oB00ZAWgIR0CS5HqU/wAmdX2UKGgGR0BJOIY3vQWvaAdL0GgIR0CS5jpmVZ9vdX2UKGgGR0BxJ/vKEFnqaAdN2QFoCEdAkui8JUo8ZHV9lChoBkdAYIk495hScmgHTegDaAhHQJLqe7EpAlh1fZQoaAZHQHBGFK5CngpoB021AWgIR0CS8LD+zdDZdX2UKGgGR0BxrtEQXhwVaAdNWANoCEdAkvMP0yxiX3V9lChoBkdAb8m2G7Bfr2gHTWACaAhHQJLz+1NQCS11fZQoaAZHQGQGAh0Qsf9oB03oA2gIR0CS93eenQ6ZdX2UKGgGR0BvpoBvJiiJaAdNVgJoCEdAkvexxYJVsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |