--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: 085cc89c-8663-43ff-ae30-3e0b4ab741e3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c27ad72042f3def8_train_data.json ds_type: json format: custom path: /workspace/input_data/c27ad72042f3def8_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 6 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik2987/085cc89c-8663-43ff-ae30-3e0b4ab741e3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: /tmp/c27ad72042f3def8_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2028 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 085cc89c-8663-43ff-ae30-3e0b4ab741e3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 085cc89c-8663-43ff-ae30-3e0b4ab741e3 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 085cc89c-8663-43ff-ae30-3e0b4ab741e3 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2567 | 0.0316 | 1 | 1.2329 | | 1.0618 | 0.1579 | 5 | 1.0954 | | 0.8714 | 0.3158 | 10 | 0.8887 | | 0.9889 | 0.4737 | 15 | 0.8109 | | 0.7376 | 0.6316 | 20 | 0.7796 | | 0.8079 | 0.7895 | 25 | 0.7661 | | 0.7532 | 0.9474 | 30 | 0.7561 | | 0.7877 | 1.1053 | 35 | 0.7507 | | 0.7139 | 1.2632 | 40 | 0.7521 | | 0.7842 | 1.4211 | 45 | 0.7522 | | 0.8305 | 1.5789 | 50 | 0.7518 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1