--- library_name: peft license: apache-2.0 base_model: Maykeye/TinyLLama-v0 tags: - axolotl - generated_from_trainer model-index: - name: 1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Maykeye/TinyLLama-v0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f140ad20081c78ce_train_data.json ds_type: json field: title path: /workspace/input_data/f140ad20081c78ce_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 3 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 6 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/f140ad20081c78ce_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 3 sequence_len: 4056 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 1bc7b11d-8ab3-44f1-bd3f-c2b84e0d0cb0 This model is a fine-tuned version of [Maykeye/TinyLLama-v0](https://huggingface.co/Maykeye/TinyLLama-v0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.6964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.2977 | 0.0003 | 1 | 10.2500 | | 10.2551 | 0.0010 | 3 | 10.2480 | | 10.3599 | 0.0019 | 6 | 10.1868 | | 10.2925 | 0.0029 | 9 | 10.0792 | | 9.8382 | 0.0039 | 12 | 9.9451 | | 9.9685 | 0.0049 | 15 | 9.8311 | | 9.741 | 0.0058 | 18 | 9.7523 | | 9.0752 | 0.0068 | 21 | 9.7099 | | 10.1768 | 0.0078 | 24 | 9.6964 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1