dimasik87 commited on
Commit
b4350da
1 Parent(s): ca31f4b

End of training

Browse files
Files changed (2) hide show
  1. README.md +158 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.2
4
+ base_model: NousResearch/Llama-3.2-1B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 2da953d6-4b6d-42f4-9f69-d4f503c8197b
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Llama-3.2-1B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 22d5208fd91f8252_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/22d5208fd91f8252_train_data.json
32
+ type:
33
+ field_input: service
34
+ field_instruction: protocol_type
35
+ field_output: class
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: null
43
+ eval_max_new_tokens: 128
44
+ eval_steps: 25
45
+ eval_table_size: null
46
+ flash_attention: false
47
+ fp16: null
48
+ fsdp: null
49
+ fsdp_config: null
50
+ gradient_accumulation_steps: 8
51
+ gradient_checkpointing: true
52
+ gradient_clipping: 1.0
53
+ group_by_length: true
54
+ hub_model_id: dimasik87/2da953d6-4b6d-42f4-9f69-d4f503c8197b
55
+ hub_repo: null
56
+ hub_strategy: checkpoint
57
+ hub_token: null
58
+ learning_rate: 0.0001
59
+ load_in_4bit: false
60
+ load_in_8bit: false
61
+ local_rank: null
62
+ logging_steps: 1
63
+ lora_alpha: 64
64
+ lora_dropout: 0.05
65
+ lora_fan_in_fan_out: null
66
+ lora_model_dir: null
67
+ lora_r: 32
68
+ lora_target_linear: true
69
+ lr_scheduler: cosine
70
+ max_memory:
71
+ 0: 74GiB
72
+ max_steps: 75
73
+ micro_batch_size: 2
74
+ mlflow_experiment_name: /tmp/22d5208fd91f8252_train_data.json
75
+ model_type: AutoModelForCausalLM
76
+ num_epochs: 3
77
+ optimizer: adamw_torch
78
+ output_dir: miner_id_24
79
+ pad_to_sequence_len: true
80
+ resume_from_checkpoint: null
81
+ s2_attention: null
82
+ sample_packing: false
83
+ save_steps: 25
84
+ save_strategy: steps
85
+ sequence_len: 2048
86
+ special_tokens:
87
+ pad_token: <|end_of_text|>
88
+ strict: false
89
+ tf32: true
90
+ tokenizer_type: AutoTokenizer
91
+ train_on_inputs: false
92
+ trust_remote_code: true
93
+ val_set_size: 0.05
94
+ wandb_entity: null
95
+ wandb_mode: online
96
+ wandb_name: 2da953d6-4b6d-42f4-9f69-d4f503c8197b
97
+ wandb_project: Gradients-On-Demand
98
+ wandb_run: your_name
99
+ wandb_runid: 2da953d6-4b6d-42f4-9f69-d4f503c8197b
100
+ warmup_ratio: 0.05
101
+ weight_decay: 0.01
102
+ xformers_attention: true
103
+
104
+ ```
105
+
106
+ </details><br>
107
+
108
+ # 2da953d6-4b6d-42f4-9f69-d4f503c8197b
109
+
110
+ This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset.
111
+ It achieves the following results on the evaluation set:
112
+ - Loss: 0.6117
113
+
114
+ ## Model description
115
+
116
+ More information needed
117
+
118
+ ## Intended uses & limitations
119
+
120
+ More information needed
121
+
122
+ ## Training and evaluation data
123
+
124
+ More information needed
125
+
126
+ ## Training procedure
127
+
128
+ ### Training hyperparameters
129
+
130
+ The following hyperparameters were used during training:
131
+ - learning_rate: 0.0001
132
+ - train_batch_size: 2
133
+ - eval_batch_size: 2
134
+ - seed: 42
135
+ - gradient_accumulation_steps: 8
136
+ - total_train_batch_size: 16
137
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
138
+ - lr_scheduler_type: cosine
139
+ - lr_scheduler_warmup_steps: 3
140
+ - training_steps: 75
141
+
142
+ ### Training results
143
+
144
+ | Training Loss | Epoch | Step | Validation Loss |
145
+ |:-------------:|:------:|:----:|:---------------:|
146
+ | 8.8371 | 0.0001 | 1 | 10.4200 |
147
+ | 0.0006 | 0.0023 | 25 | 1.8638 |
148
+ | 0.0001 | 0.0045 | 50 | 2.6063 |
149
+ | 0.8934 | 0.0068 | 75 | 0.6117 |
150
+
151
+
152
+ ### Framework versions
153
+
154
+ - PEFT 0.13.2
155
+ - Transformers 4.46.0
156
+ - Pytorch 2.5.0+cu124
157
+ - Datasets 3.0.1
158
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:018e43c2a2bc4c759708aa7f84fc61e84df47e89492559a204d7cece142f7a8f
3
+ size 90258378