--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 38c537af-903d-4208-9186-707aa28f3a5b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 66e1f5c3a87b9009_train_data.json ds_type: json format: custom path: /workspace/input_data/66e1f5c3a87b9009_train_data.json type: field_instruction: file_content field_output: extracted_data format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/38c537af-903d-4208-9186-707aa28f3a5b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/66e1f5c3a87b9009_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 save_strategy: steps sequence_len: 2028 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 38c537af-903d-4208-9186-707aa28f3a5b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 38c537af-903d-4208-9186-707aa28f3a5b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 38c537af-903d-4208-9186-707aa28f3a5b This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1534 | 0.0044 | 1 | 0.1782 | | 0.1692 | 0.0219 | 5 | 0.1293 | | 0.0406 | 0.0438 | 10 | 0.0294 | | 0.0064 | 0.0657 | 15 | 0.0184 | | 0.0248 | 0.0876 | 20 | 0.0178 | | 0.0087 | 0.1095 | 25 | 0.0161 | | 0.0121 | 0.1314 | 30 | 0.0160 | | 0.0049 | 0.1533 | 35 | 0.0151 | | 0.0124 | 0.1752 | 40 | 0.0145 | | 0.0076 | 0.1972 | 45 | 0.0142 | | 0.0124 | 0.2191 | 50 | 0.0142 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1