--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6813e4a9-59b5-485f-b2d9-38de43e7887d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4068f8101ab29bee_train_data.json ds_type: json format: custom path: /workspace/input_data/4068f8101ab29bee_train_data.json type: field_instruction: infobox field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik87/6813e4a9-59b5-485f-b2d9-38de43e7887d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 1 mlflow_experiment_name: /tmp/4068f8101ab29bee_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2028 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6813e4a9-59b5-485f-b2d9-38de43e7887d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6813e4a9-59b5-485f-b2d9-38de43e7887d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 6813e4a9-59b5-485f-b2d9-38de43e7887d This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7376 | 0.0027 | 1 | 0.7193 | | 0.6835 | 0.0108 | 4 | 0.6272 | | 0.3742 | 0.0215 | 8 | 0.3806 | | 0.2788 | 0.0323 | 12 | 0.3253 | | 0.5915 | 0.0431 | 16 | 0.2901 | | 0.2583 | 0.0538 | 20 | 0.2826 | | 0.2147 | 0.0646 | 24 | 0.2890 | | 0.2077 | 0.0754 | 28 | 0.2844 | | 0.4248 | 0.0861 | 32 | 0.2731 | | 0.3099 | 0.0969 | 36 | 0.2734 | | 0.2465 | 0.1077 | 40 | 0.2704 | | 0.2693 | 0.1184 | 44 | 0.2685 | | 0.231 | 0.1292 | 48 | 0.2675 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1