dimi1357 commited on
Commit
b5d84f1
·
1 Parent(s): afb4d09

First model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.00 +/- 19.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b0bcd0040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b0bcd00d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b0bcd0160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b0bcd01f0>", "_build": "<function ActorCriticPolicy._build at 0x7f7b0bcd0280>", "forward": "<function ActorCriticPolicy.forward at 0x7f7b0bcd0310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b0bcd03a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7b0bcd0430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b0bcd04c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b0bcd0550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b0bcd05e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7b0bccb510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673200714602466074, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Xtj1FTok8eCFpvYCeSb6K3Ru7xl3ivAAAAAAAAAAAMxZ0vTRokD5A0rM7CqJ3vlWWlLzFYxa+AAAAAAAAAAAzwy69FMrZuudJijscJZw82rWau5Lchj0AAIA/AACAP1pMRr7z7k4/a7dVPReUmb4zNJi9IuiQPQAAAAAAAAAAmpvjPKpnqj8yEcA+9gIKv31GFrw2ElA9AAAAAAAAAAAaDym96t5ZP4Yknrwh44m+qWekPEoAuTwAAAAAAAAAAE0ncD0Jk6c/I+7ZPits5L7QrjY9GPthPgAAAAAAAAAAs41QPRQsgbqcECe5F8wktOaHSTvtAEM4AACAPwAAgD/mMA4+JH46PzaSzb1grqq+IGclvSIULz0AAAAAAAAAAI1nPT5G64w+GsOxvTSjgb6buzA9Jim6PAAAAAAAAAAAAMhwvSnsXbp+tsywUdBqMIawhbuARWWzAACAPwAAgD86BkK+VPWWP2sxcb7ZYK6+XwBSvj9mxj0AAAAAAAAAAHN8hj1eqAM/yiSIvU7zur7zPFi8gF1zPQAAAAAAAAAAZuPIPHH3JD/WG868gOqPvqTOB72ujZG9AAAAAAAAAACTbTm+quNtP20GZDtJqXS+0+e2vVt3lDwAAAAAAAAAAGaGEb0fQOS78g4BvkBOWL5QOXm8TSBZPwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvVKWIY42cECUhpRSlIwBbJRNZQGMAXSUR0CYZdj9GZuydX2UKGgGaAloD0MIADj27LnCbkCUhpRSlGgVTR8BaBZHQJhngz9CNS91fZQoaAZoCWgPQwgUI0vm2HZvQJSGlFKUaBVNKAFoFkdAmGgDijtXxXV9lChoBmgJaA9DCBh47j1clm5AlIaUUpRoFU1DAWgWR0CYaMx3FDOUdX2UKGgGaAloD0MIPdF14Qfob0CUhpRSlGgVTSoBaBZHQJh+NesxO+J1fZQoaAZoCWgPQwh2xYzwdq9vQJSGlFKUaBVNVAFoFkdAmH5fsZ5zHXV9lChoBmgJaA9DCIS3ByFg4HBAlIaUUpRoFU1gAWgWR0CYfqHdoFmndX2UKGgGaAloD0MIV+vE5XhfcUCUhpRSlGgVTYoBaBZHQJiAAq2Bret1fZQoaAZoCWgPQwjueJPfoppxQJSGlFKUaBVNJwFoFkdAmII4qbz9THV9lChoBmgJaA9DCHtLOV/sBnFAlIaUUpRoFU02AWgWR0CYg4kdmxt6dX2UKGgGaAloD0MIGePD7CWlcUCUhpRSlGgVTVgBaBZHQJiEClpGnXN1fZQoaAZoCWgPQwjL2qZ4HBBwQJSGlFKUaBVNXgFoFkdAmIRr1yvLYHV9lChoBmgJaA9DCBsQIa6cwGRAlIaUUpRoFU3oA2gWR0CYhQvKEFnqdX2UKGgGaAloD0MIHVvPEE5Tc0CUhpRSlGgVTUABaBZHQJiGXVLBbfR1fZQoaAZoCWgPQwh95qxPuQNwQJSGlFKUaBVNMgFoFkdAmIa83ZPEbnV9lChoBmgJaA9DCKkz95Dwh2xAlIaUUpRoFU0UAWgWR0CYh7PYnOSodX2UKGgGaAloD0MI3PC76RYkbUCUhpRSlGgVTYsBaBZHQJiIHlFMIu51fZQoaAZoCWgPQwgq5iDoaOJvQJSGlFKUaBVNJAFoFkdAmIkZOWSlnHV9lChoBmgJaA9DCHWr56R37W5AlIaUUpRoFU1dAWgWR0CYjGxptaZAdX2UKGgGaAloD0MIOWBXk6fJckCUhpRSlGgVTT0BaBZHQJiNV3/xUed1fZQoaAZoCWgPQwiyZmSQu6BzQJSGlFKUaBVNbwFoFkdAmI3DzVc2SHV9lChoBmgJaA9DCNe/6zOnVnFAlIaUUpRoFU0hAWgWR0CYjpPczqKQdX2UKGgGaAloD0MIQWZn0bvxcECUhpRSlGgVTSUBaBZHQJiRHo4dZJV1fZQoaAZoCWgPQwiGcTeIlnhyQJSGlFKUaBVNQAFoFkdAmJHzc/MW43V9lChoBmgJaA9DCFxYN94dW29AlIaUUpRoFU1UAWgWR0CYklp++dsjdX2UKGgGaAloD0MI/n+cMKGFckCUhpRSlGgVTTcBaBZHQJiStE9dNWV1fZQoaAZoCWgPQwgktVAyeSdwQJSGlFKUaBVNGAJoFkdAmJUKEzwc53V9lChoBmgJaA9DCDYebLFbxnFAlIaUUpRoFU1OAWgWR0CYlQqioKlYdX2UKGgGaAloD0MIvM6G/HMscUCUhpRSlGgVTS4BaBZHQJiVFrVOKwZ1fZQoaAZoCWgPQwjxgR3/RZVwQJSGlFKUaBVNNAFoFkdAmJbdw71ZknV9lChoBmgJaA9DCFSOyeL+1nBAlIaUUpRoFU2mAWgWR0CYmVx9XtBwdX2UKGgGaAloD0MI5Q6byIzpcECUhpRSlGgVTSMBaBZHQJialLteD4B1fZQoaAZoCWgPQwgddXRcTRtwQJSGlFKUaBVNLAFoFkdAmJtmrfcesHV9lChoBmgJaA9DCKWfcHZry3BAlIaUUpRoFU1ZAWgWR0CYnB1lGwzMdX2UKGgGaAloD0MIjPhOzDpqcECUhpRSlGgVTTMBaBZHQJichI6Kcd51fZQoaAZoCWgPQwgUeCefHpduQJSGlFKUaBVN1QFoFkdAmJ0dxEORT3V9lChoBmgJaA9DCCBFnbkHR3BAlIaUUpRoFU0cAWgWR0CYnzItUXHjdX2UKGgGaAloD0MIG9XpQNZycECUhpRSlGgVTVsBaBZHQJihqqtHQQd1fZQoaAZoCWgPQwg9ZMqHoCxwQJSGlFKUaBVNegFoFkdAmKHtGRV6vHV9lChoBmgJaA9DCAuZK4MqMnJAlIaUUpRoFU11AWgWR0CYooIy0rsjdX2UKGgGaAloD0MIqfi/I+oZcUCUhpRSlGgVTTYBaBZHQJii1GwzLwF1fZQoaAZoCWgPQwhGCmXhK8FwQJSGlFKUaBVNRAFoFkdAmKNl9KEnLXV9lChoBmgJaA9DCDY//tIiEmJAlIaUUpRoFU3oA2gWR0CYo8t78ejmdX2UKGgGaAloD0MI0JhJ1AtTcUCUhpRSlGgVTVgBaBZHQJikNSydFv11fZQoaAZoCWgPQwj7rDJT2jVvQJSGlFKUaBVNUQFoFkdAmKV8zZYgaHV9lChoBmgJaA9DCBDoTNrUWWFAlIaUUpRoFU3oA2gWR0CYpsTINmUXdX2UKGgGaAloD0MIoPtyZrt9cUCUhpRSlGgVTUMBaBZHQJinHvJA+px1fZQoaAZoCWgPQwijPskdtnNtQJSGlFKUaBVNEAFoFkdAmKeuyNXHR3V9lChoBmgJaA9DCHDRyVLr+G5AlIaUUpRoFU0lAWgWR0CYqCSkj5bhdX2UKGgGaAloD0MIBr03hoDya0CUhpRSlGgVTTwBaBZHQJioZZq20At1fZQoaAZoCWgPQwjNqzqrxUhxQJSGlFKUaBVNGwFoFkdAmKigCKaXr3V9lChoBmgJaA9DCA6+MJlq1HBAlIaUUpRoFU05AWgWR0CYw9ETQE6ldX2UKGgGaAloD0MIGAeXjvl1cECUhpRSlGgVTagBaBZHQJjD4MnZ00Z1fZQoaAZoCWgPQwhlw5rKomAvQJSGlFKUaBVL7mgWR0CYxNr30wrUdX2UKGgGaAloD0MI4uXpXFGVcUCUhpRSlGgVTSMBaBZHQJjFlQAMlTp1fZQoaAZoCWgPQwje/8cJU1VxQJSGlFKUaBVNIQFoFkdAmMW9I065oXV9lChoBmgJaA9DCHyBWaHIgHBAlIaUUpRoFU0+AWgWR0CYx+fe1rqMdX2UKGgGaAloD0MIKnReY1cIckCUhpRSlGgVTT4BaBZHQJjJhiONo8J1fZQoaAZoCWgPQwgU0a+tHxVwQJSGlFKUaBVNDQFoFkdAmMsYvi97GHV9lChoBmgJaA9DCLtkHCNZtnBAlIaUUpRoFU1HAWgWR0CYy+CA+Y+jdX2UKGgGaAloD0MIMNRhhdsNb0CUhpRSlGgVTYgBaBZHQJjNMOTaCcx1fZQoaAZoCWgPQwicqKW5FX5tQJSGlFKUaBVNGAFoFkdAmM1ajzqbB3V9lChoBmgJaA9DCDgteNHXgXFAlIaUUpRoFU0/AWgWR0CYzeGAkLQYdX2UKGgGaAloD0MIrI+HvrsVcUCUhpRSlGgVTUUBaBZHQJjOk+fRNRF1fZQoaAZoCWgPQwiBdocUg6FsQJSGlFKUaBVNhAFoFkdAmM+c1sLv1HV9lChoBmgJaA9DCIBgjh5/03FAlIaUUpRoFU1pAWgWR0CY0DcinpB5dX2UKGgGaAloD0MIjEtV2uLfb0CUhpRSlGgVTRkBaBZHQJjQi2b5M111fZQoaAZoCWgPQwigwhGkUvZwQJSGlFKUaBVNEAFoFkdAmNFp6D5CW3V9lChoBmgJaA9DCGr5gav8DnJAlIaUUpRoFU06AWgWR0CY0cXbM5fddX2UKGgGaAloD0MIy5wui0kqckCUhpRSlGgVS/BoFkdAmNHd1QqI8HV9lChoBmgJaA9DCNYcIJgjTG5AlIaUUpRoFU0zAWgWR0CY0iEtdzGQdX2UKGgGaAloD0MIBcB4Bo3AcUCUhpRSlGgVTTIBaBZHQJjSny6MBIZ1fZQoaAZoCWgPQwi4PNaMjJtyQJSGlFKUaBVNCQFoFkdAmNOeBQN1AHV9lChoBmgJaA9DCCf5Eb8iXnBAlIaUUpRoFU0oAWgWR0CY1gcGTs6adX2UKGgGaAloD0MItiv0wfKVcUCUhpRSlGgVTQYBaBZHQJjWlCY1He91fZQoaAZoCWgPQwjQnPUph2JwQJSGlFKUaBVNPgFoFkdAmNemKMvRJHV9lChoBmgJaA9DCLFqEOZ2qW9AlIaUUpRoFU0TAWgWR0CY2LLDye7MdX2UKGgGaAloD0MIRj8aTpl4bkCUhpRSlGgVTTcBaBZHQJjY64Ajps51fZQoaAZoCWgPQwjNrRBW49RwQJSGlFKUaBVNLAFoFkdAmNvVLnLaEnV9lChoBmgJaA9DCNJUT+afV3BAlIaUUpRoFU1rAWgWR0CY2+4Pf8/EdX2UKGgGaAloD0MIn8ppTwkpcECUhpRSlGgVTT8BaBZHQJjb+4PPLPl1fZQoaAZoCWgPQwineccpOtdwQJSGlFKUaBVNFQFoFkdAmNzGEsasIXV9lChoBmgJaA9DCErUCz4N9nFAlIaUUpRoFU1KAWgWR0CY3WBpYcNpdX2UKGgGaAloD0MIK4arAyCfbkCUhpRSlGgVTVEBaBZHQJjej3i704B1fZQoaAZoCWgPQwj/HydMmJZvQJSGlFKUaBVNLwFoFkdAmN6sSkCV8nV9lChoBmgJaA9DCEm5+xwfRXFAlIaUUpRoFU1DAWgWR0CY3tA3T/hmdX2UKGgGaAloD0MIK9mxEYgBcUCUhpRSlGgVTW8BaBZHQJjf5mukk8l1fZQoaAZoCWgPQwhp44i1uAdyQJSGlFKUaBVNGAFoFkdAmOHj9S/CZXV9lChoBmgJaA9DCHcU56gj5HFAlIaUUpRoFU0YAWgWR0CY4uRa5f+kdX2UKGgGaAloD0MIca5hhsaOYUCUhpRSlGgVTegDaBZHQJjjK/j81oB1fZQoaAZoCWgPQwgEVDiCVNRNQJSGlFKUaBVLzGgWR0CY452B8QZodX2UKGgGaAloD0MILBA9KZN/bECUhpRSlGgVTVQBaBZHQJjmYTJyQxN1fZQoaAZoCWgPQwjieD4D6jBuQJSGlFKUaBVNVAFoFkdAmOaZlOGj9HV9lChoBmgJaA9DCEPiHksfHW5AlIaUUpRoFU0SAWgWR0CY5pksBhhIdX2UKGgGaAloD0MIwavlzkz0b0CUhpRSlGgVTekBaBZHQJjnICxNZeR1fZQoaAZoCWgPQwgQ7PgvULRwQJSGlFKUaBVNrgFoFkdAmOdt6gM+eXV9lChoBmgJaA9DCF9f61IjelBAlIaUUpRoFUviaBZHQJjniBjFyaN1fZQoaAZoCWgPQwjluFM62OJvQJSGlFKUaBVNNwFoFkdAmOiJ5eJHiHV9lChoBmgJaA9DCDHqWnsf73FAlIaUUpRoFU1SAWgWR0CY6fmuTzNEdX2UKGgGaAloD0MIgh5q2/BgckCUhpRSlGgVTX4BaBZHQJjqKUOd5IJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
dimi-unit1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:391d4e3049a0a0115209837314801bb5df977581af8b2ccaf74d0adeab7395bf
3
+ size 147214
dimi-unit1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
dimi-unit1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b0bcd0040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b0bcd00d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b0bcd0160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b0bcd01f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7b0bcd0280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7b0bcd0310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b0bcd03a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7b0bcd0430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b0bcd04c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b0bcd0550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b0bcd05e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7b0bccb510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673200714602466074,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Xtj1FTok8eCFpvYCeSb6K3Ru7xl3ivAAAAAAAAAAAMxZ0vTRokD5A0rM7CqJ3vlWWlLzFYxa+AAAAAAAAAAAzwy69FMrZuudJijscJZw82rWau5Lchj0AAIA/AACAP1pMRr7z7k4/a7dVPReUmb4zNJi9IuiQPQAAAAAAAAAAmpvjPKpnqj8yEcA+9gIKv31GFrw2ElA9AAAAAAAAAAAaDym96t5ZP4Yknrwh44m+qWekPEoAuTwAAAAAAAAAAE0ncD0Jk6c/I+7ZPits5L7QrjY9GPthPgAAAAAAAAAAs41QPRQsgbqcECe5F8wktOaHSTvtAEM4AACAPwAAgD/mMA4+JH46PzaSzb1grqq+IGclvSIULz0AAAAAAAAAAI1nPT5G64w+GsOxvTSjgb6buzA9Jim6PAAAAAAAAAAAAMhwvSnsXbp+tsywUdBqMIawhbuARWWzAACAPwAAgD86BkK+VPWWP2sxcb7ZYK6+XwBSvj9mxj0AAAAAAAAAAHN8hj1eqAM/yiSIvU7zur7zPFi8gF1zPQAAAAAAAAAAZuPIPHH3JD/WG868gOqPvqTOB72ujZG9AAAAAAAAAACTbTm+quNtP20GZDtJqXS+0+e2vVt3lDwAAAAAAAAAAGaGEb0fQOS78g4BvkBOWL5QOXm8TSBZPwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvVKWIY42cECUhpRSlIwBbJRNZQGMAXSUR0CYZdj9GZuydX2UKGgGaAloD0MIADj27LnCbkCUhpRSlGgVTR8BaBZHQJhngz9CNS91fZQoaAZoCWgPQwgUI0vm2HZvQJSGlFKUaBVNKAFoFkdAmGgDijtXxXV9lChoBmgJaA9DCBh47j1clm5AlIaUUpRoFU1DAWgWR0CYaMx3FDOUdX2UKGgGaAloD0MIPdF14Qfob0CUhpRSlGgVTSoBaBZHQJh+NesxO+J1fZQoaAZoCWgPQwh2xYzwdq9vQJSGlFKUaBVNVAFoFkdAmH5fsZ5zHXV9lChoBmgJaA9DCIS3ByFg4HBAlIaUUpRoFU1gAWgWR0CYfqHdoFmndX2UKGgGaAloD0MIV+vE5XhfcUCUhpRSlGgVTYoBaBZHQJiAAq2Bret1fZQoaAZoCWgPQwjueJPfoppxQJSGlFKUaBVNJwFoFkdAmII4qbz9THV9lChoBmgJaA9DCHtLOV/sBnFAlIaUUpRoFU02AWgWR0CYg4kdmxt6dX2UKGgGaAloD0MIGePD7CWlcUCUhpRSlGgVTVgBaBZHQJiEClpGnXN1fZQoaAZoCWgPQwjL2qZ4HBBwQJSGlFKUaBVNXgFoFkdAmIRr1yvLYHV9lChoBmgJaA9DCBsQIa6cwGRAlIaUUpRoFU3oA2gWR0CYhQvKEFnqdX2UKGgGaAloD0MIHVvPEE5Tc0CUhpRSlGgVTUABaBZHQJiGXVLBbfR1fZQoaAZoCWgPQwh95qxPuQNwQJSGlFKUaBVNMgFoFkdAmIa83ZPEbnV9lChoBmgJaA9DCKkz95Dwh2xAlIaUUpRoFU0UAWgWR0CYh7PYnOSodX2UKGgGaAloD0MI3PC76RYkbUCUhpRSlGgVTYsBaBZHQJiIHlFMIu51fZQoaAZoCWgPQwgq5iDoaOJvQJSGlFKUaBVNJAFoFkdAmIkZOWSlnHV9lChoBmgJaA9DCHWr56R37W5AlIaUUpRoFU1dAWgWR0CYjGxptaZAdX2UKGgGaAloD0MIOWBXk6fJckCUhpRSlGgVTT0BaBZHQJiNV3/xUed1fZQoaAZoCWgPQwiyZmSQu6BzQJSGlFKUaBVNbwFoFkdAmI3DzVc2SHV9lChoBmgJaA9DCNe/6zOnVnFAlIaUUpRoFU0hAWgWR0CYjpPczqKQdX2UKGgGaAloD0MIQWZn0bvxcECUhpRSlGgVTSUBaBZHQJiRHo4dZJV1fZQoaAZoCWgPQwiGcTeIlnhyQJSGlFKUaBVNQAFoFkdAmJHzc/MW43V9lChoBmgJaA9DCFxYN94dW29AlIaUUpRoFU1UAWgWR0CYklp++dsjdX2UKGgGaAloD0MI/n+cMKGFckCUhpRSlGgVTTcBaBZHQJiStE9dNWV1fZQoaAZoCWgPQwgktVAyeSdwQJSGlFKUaBVNGAJoFkdAmJUKEzwc53V9lChoBmgJaA9DCDYebLFbxnFAlIaUUpRoFU1OAWgWR0CYlQqioKlYdX2UKGgGaAloD0MIvM6G/HMscUCUhpRSlGgVTS4BaBZHQJiVFrVOKwZ1fZQoaAZoCWgPQwjxgR3/RZVwQJSGlFKUaBVNNAFoFkdAmJbdw71ZknV9lChoBmgJaA9DCFSOyeL+1nBAlIaUUpRoFU2mAWgWR0CYmVx9XtBwdX2UKGgGaAloD0MI5Q6byIzpcECUhpRSlGgVTSMBaBZHQJialLteD4B1fZQoaAZoCWgPQwgddXRcTRtwQJSGlFKUaBVNLAFoFkdAmJtmrfcesHV9lChoBmgJaA9DCKWfcHZry3BAlIaUUpRoFU1ZAWgWR0CYnB1lGwzMdX2UKGgGaAloD0MIjPhOzDpqcECUhpRSlGgVTTMBaBZHQJichI6Kcd51fZQoaAZoCWgPQwgUeCefHpduQJSGlFKUaBVN1QFoFkdAmJ0dxEORT3V9lChoBmgJaA9DCCBFnbkHR3BAlIaUUpRoFU0cAWgWR0CYnzItUXHjdX2UKGgGaAloD0MIG9XpQNZycECUhpRSlGgVTVsBaBZHQJihqqtHQQd1fZQoaAZoCWgPQwg9ZMqHoCxwQJSGlFKUaBVNegFoFkdAmKHtGRV6vHV9lChoBmgJaA9DCAuZK4MqMnJAlIaUUpRoFU11AWgWR0CYooIy0rsjdX2UKGgGaAloD0MIqfi/I+oZcUCUhpRSlGgVTTYBaBZHQJii1GwzLwF1fZQoaAZoCWgPQwhGCmXhK8FwQJSGlFKUaBVNRAFoFkdAmKNl9KEnLXV9lChoBmgJaA9DCDY//tIiEmJAlIaUUpRoFU3oA2gWR0CYo8t78ejmdX2UKGgGaAloD0MI0JhJ1AtTcUCUhpRSlGgVTVgBaBZHQJikNSydFv11fZQoaAZoCWgPQwj7rDJT2jVvQJSGlFKUaBVNUQFoFkdAmKV8zZYgaHV9lChoBmgJaA9DCBDoTNrUWWFAlIaUUpRoFU3oA2gWR0CYpsTINmUXdX2UKGgGaAloD0MIoPtyZrt9cUCUhpRSlGgVTUMBaBZHQJinHvJA+px1fZQoaAZoCWgPQwijPskdtnNtQJSGlFKUaBVNEAFoFkdAmKeuyNXHR3V9lChoBmgJaA9DCHDRyVLr+G5AlIaUUpRoFU0lAWgWR0CYqCSkj5bhdX2UKGgGaAloD0MIBr03hoDya0CUhpRSlGgVTTwBaBZHQJioZZq20At1fZQoaAZoCWgPQwjNqzqrxUhxQJSGlFKUaBVNGwFoFkdAmKigCKaXr3V9lChoBmgJaA9DCA6+MJlq1HBAlIaUUpRoFU05AWgWR0CYw9ETQE6ldX2UKGgGaAloD0MIGAeXjvl1cECUhpRSlGgVTagBaBZHQJjD4MnZ00Z1fZQoaAZoCWgPQwhlw5rKomAvQJSGlFKUaBVL7mgWR0CYxNr30wrUdX2UKGgGaAloD0MI4uXpXFGVcUCUhpRSlGgVTSMBaBZHQJjFlQAMlTp1fZQoaAZoCWgPQwje/8cJU1VxQJSGlFKUaBVNIQFoFkdAmMW9I065oXV9lChoBmgJaA9DCHyBWaHIgHBAlIaUUpRoFU0+AWgWR0CYx+fe1rqMdX2UKGgGaAloD0MIKnReY1cIckCUhpRSlGgVTT4BaBZHQJjJhiONo8J1fZQoaAZoCWgPQwgU0a+tHxVwQJSGlFKUaBVNDQFoFkdAmMsYvi97GHV9lChoBmgJaA9DCLtkHCNZtnBAlIaUUpRoFU1HAWgWR0CYy+CA+Y+jdX2UKGgGaAloD0MIMNRhhdsNb0CUhpRSlGgVTYgBaBZHQJjNMOTaCcx1fZQoaAZoCWgPQwicqKW5FX5tQJSGlFKUaBVNGAFoFkdAmM1ajzqbB3V9lChoBmgJaA9DCDgteNHXgXFAlIaUUpRoFU0/AWgWR0CYzeGAkLQYdX2UKGgGaAloD0MIrI+HvrsVcUCUhpRSlGgVTUUBaBZHQJjOk+fRNRF1fZQoaAZoCWgPQwiBdocUg6FsQJSGlFKUaBVNhAFoFkdAmM+c1sLv1HV9lChoBmgJaA9DCIBgjh5/03FAlIaUUpRoFU1pAWgWR0CY0DcinpB5dX2UKGgGaAloD0MIjEtV2uLfb0CUhpRSlGgVTRkBaBZHQJjQi2b5M111fZQoaAZoCWgPQwigwhGkUvZwQJSGlFKUaBVNEAFoFkdAmNFp6D5CW3V9lChoBmgJaA9DCGr5gav8DnJAlIaUUpRoFU06AWgWR0CY0cXbM5fddX2UKGgGaAloD0MIy5wui0kqckCUhpRSlGgVS/BoFkdAmNHd1QqI8HV9lChoBmgJaA9DCNYcIJgjTG5AlIaUUpRoFU0zAWgWR0CY0iEtdzGQdX2UKGgGaAloD0MIBcB4Bo3AcUCUhpRSlGgVTTIBaBZHQJjSny6MBIZ1fZQoaAZoCWgPQwi4PNaMjJtyQJSGlFKUaBVNCQFoFkdAmNOeBQN1AHV9lChoBmgJaA9DCCf5Eb8iXnBAlIaUUpRoFU0oAWgWR0CY1gcGTs6adX2UKGgGaAloD0MItiv0wfKVcUCUhpRSlGgVTQYBaBZHQJjWlCY1He91fZQoaAZoCWgPQwjQnPUph2JwQJSGlFKUaBVNPgFoFkdAmNemKMvRJHV9lChoBmgJaA9DCLFqEOZ2qW9AlIaUUpRoFU0TAWgWR0CY2LLDye7MdX2UKGgGaAloD0MIRj8aTpl4bkCUhpRSlGgVTTcBaBZHQJjY64Ajps51fZQoaAZoCWgPQwjNrRBW49RwQJSGlFKUaBVNLAFoFkdAmNvVLnLaEnV9lChoBmgJaA9DCNJUT+afV3BAlIaUUpRoFU1rAWgWR0CY2+4Pf8/EdX2UKGgGaAloD0MIn8ppTwkpcECUhpRSlGgVTT8BaBZHQJjb+4PPLPl1fZQoaAZoCWgPQwineccpOtdwQJSGlFKUaBVNFQFoFkdAmNzGEsasIXV9lChoBmgJaA9DCErUCz4N9nFAlIaUUpRoFU1KAWgWR0CY3WBpYcNpdX2UKGgGaAloD0MIK4arAyCfbkCUhpRSlGgVTVEBaBZHQJjej3i704B1fZQoaAZoCWgPQwj/HydMmJZvQJSGlFKUaBVNLwFoFkdAmN6sSkCV8nV9lChoBmgJaA9DCEm5+xwfRXFAlIaUUpRoFU1DAWgWR0CY3tA3T/hmdX2UKGgGaAloD0MIK9mxEYgBcUCUhpRSlGgVTW8BaBZHQJjf5mukk8l1fZQoaAZoCWgPQwhp44i1uAdyQJSGlFKUaBVNGAFoFkdAmOHj9S/CZXV9lChoBmgJaA9DCHcU56gj5HFAlIaUUpRoFU0YAWgWR0CY4uRa5f+kdX2UKGgGaAloD0MIca5hhsaOYUCUhpRSlGgVTegDaBZHQJjjK/j81oB1fZQoaAZoCWgPQwgEVDiCVNRNQJSGlFKUaBVLzGgWR0CY452B8QZodX2UKGgGaAloD0MILBA9KZN/bECUhpRSlGgVTVQBaBZHQJjmYTJyQxN1fZQoaAZoCWgPQwjieD4D6jBuQJSGlFKUaBVNVAFoFkdAmOaZlOGj9HV9lChoBmgJaA9DCEPiHksfHW5AlIaUUpRoFU0SAWgWR0CY5pksBhhIdX2UKGgGaAloD0MIwavlzkz0b0CUhpRSlGgVTekBaBZHQJjnICxNZeR1fZQoaAZoCWgPQwgQ7PgvULRwQJSGlFKUaBVNrgFoFkdAmOdt6gM+eXV9lChoBmgJaA9DCF9f61IjelBAlIaUUpRoFUviaBZHQJjniBjFyaN1fZQoaAZoCWgPQwjluFM62OJvQJSGlFKUaBVNNwFoFkdAmOiJ5eJHiHV9lChoBmgJaA9DCDHqWnsf73FAlIaUUpRoFU1SAWgWR0CY6fmuTzNEdX2UKGgGaAloD0MIgh5q2/BgckCUhpRSlGgVTX4BaBZHQJjqKUOd5IJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
dimi-unit1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe746d9960576196960f623ccfdbdd57cabcda4b4386694ce1306e4fdef1dcc6
3
+ size 87929
dimi-unit1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97088d8058199881bee474fffd6f84ea19f432344f28af699db62667968b90ac
3
+ size 43201
dimi-unit1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dimi-unit1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (221 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.99662633965514, "std_reward": 19.27607025738996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T18:27:40.642541"}