File size: 2,968 Bytes
4943488 13361ad 4943488 13361ad 4943488 13361ad 4943488 13361ad 4943488 37958ac 13361ad 4943488 37958ac 4943488 37958ac 4943488 13361ad 4943488 37958ac 4943488 13361ad 4943488 3574082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language:
- el
tags:
- text
- language-modeling
datasets:
- dataset/wiki_oscar_combined_normalized_uncased
metrics:
- accuracy
model-index:
- name: greek-longformer-base-4096
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: dataset/wiki_oscar_combined_normalized_uncased
type: dataset/wiki_oscar_combined_normalized_uncased
split: None
metrics:
- name: Accuracy
type: accuracy
value: 0.7765486725663717
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Greek Longformer
A Greek version of the Longformer Language Model.
This model is a (from scratch) Greek Longformer model based on the configuration of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096), and trained on the combined datasets from the [Greek Wikipedia](https://huggingface.co/datasets/wikipedia) and the Greek part of [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301).
It achieves the following results on the evaluation set:
- Loss: 1.1080
- Accuracy: 0.7765
## Pre-training corpora
The pre-training corpora of `greek-longformer-base-4096` include:
- The Greek part of [Wikipedia](https://el.wikipedia.org/wiki/Βικιπαίδεια:Αντίγραφα_της_βάσης_δεδομένων),
- The Greek part of [OSCAR](https://traces1.inria.fr/oscar/), a cleansed version of [Common Crawl](https://commoncrawl.org).
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6.0
### Training results
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2
## Citing & Authors
The model has been officially released with the article "From Pre-training to Meta-Learning: A journey in Low-Resource-Language Representation Learning".
Dimitrios Zaikis and Ioannis Vlahavas.
In: IEEE Access.
If you use the model, please cite the following:
```bibtex
@ARTICLE{10288436,
author = {Zaikis, Dimitrios and Vlahavas, Ioannis},
journal = {IEEE Access},
title = {From Pre-training to Meta-Learning: A journey in Low-Resource-Language Representation Learning},
year = {2023},
volume = {},
number = {},
pages = {1-1},
doi = {10.1109/ACCESS.2023.3326337}
}
```
|