update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: t5-small-finetuned-en-to-it-hrs
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-small-finetuned-en-to-it-hrs
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.1558
|
20 |
+
- Bleu: 9.8991
|
21 |
+
- Gen Len: 51.8287
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 40
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
|
53 |
+
| 2.0084 | 1.0 | 1125 | 2.8804 | 4.4102 | 67.6067 |
|
54 |
+
| 1.7918 | 2.0 | 2250 | 2.7757 | 6.1959 | 58.0313 |
|
55 |
+
| 1.6944 | 3.0 | 3375 | 2.6845 | 6.9152 | 55.6953 |
|
56 |
+
| 1.5955 | 4.0 | 4500 | 2.6219 | 7.3056 | 54.8213 |
|
57 |
+
| 1.5304 | 5.0 | 5625 | 2.5659 | 7.9427 | 53.4173 |
|
58 |
+
| 1.52 | 6.0 | 6750 | 2.5249 | 8.2049 | 53.678 |
|
59 |
+
| 1.4934 | 7.0 | 7875 | 2.4853 | 8.6612 | 52.304 |
|
60 |
+
| 1.4518 | 8.0 | 9000 | 2.4522 | 8.7991 | 52.6467 |
|
61 |
+
| 1.4393 | 9.0 | 10125 | 2.4353 | 8.8251 | 52.7047 |
|
62 |
+
| 1.4196 | 10.0 | 11250 | 2.4027 | 9.01 | 52.5387 |
|
63 |
+
| 1.405 | 11.0 | 12375 | 2.3797 | 9.1513 | 52.0273 |
|
64 |
+
| 1.3741 | 12.0 | 13500 | 2.3590 | 9.2401 | 52.3373 |
|
65 |
+
| 1.3693 | 13.0 | 14625 | 2.3378 | 9.3611 | 52.1507 |
|
66 |
+
| 1.3638 | 14.0 | 15750 | 2.3226 | 9.4213 | 52.2813 |
|
67 |
+
| 1.3366 | 15.0 | 16875 | 2.3071 | 9.5199 | 52.1507 |
|
68 |
+
| 1.3294 | 16.0 | 18000 | 2.2943 | 9.5296 | 51.9587 |
|
69 |
+
| 1.3258 | 17.0 | 19125 | 2.2788 | 9.6231 | 51.5807 |
|
70 |
+
| 1.3152 | 18.0 | 20250 | 2.2693 | 9.6586 | 51.8933 |
|
71 |
+
| 1.3023 | 19.0 | 21375 | 2.2543 | 9.6762 | 51.5733 |
|
72 |
+
| 1.3061 | 20.0 | 22500 | 2.2451 | 9.6926 | 51.6727 |
|
73 |
+
| 1.3004 | 21.0 | 23625 | 2.2344 | 9.773 | 51.6527 |
|
74 |
+
| 1.2839 | 22.0 | 24750 | 2.2242 | 9.7973 | 51.8113 |
|
75 |
+
| 1.2869 | 23.0 | 25875 | 2.2161 | 9.8177 | 51.9073 |
|
76 |
+
| 1.2819 | 24.0 | 27000 | 2.2115 | 9.8183 | 51.6707 |
|
77 |
+
| 1.2642 | 25.0 | 28125 | 2.2037 | 9.7645 | 52.0853 |
|
78 |
+
| 1.2685 | 26.0 | 29250 | 2.1984 | 9.7764 | 51.6927 |
|
79 |
+
| 1.2609 | 27.0 | 30375 | 2.1934 | 9.7205 | 51.9647 |
|
80 |
+
| 1.2585 | 28.0 | 31500 | 2.1834 | 9.8116 | 51.7373 |
|
81 |
+
| 1.2564 | 29.0 | 32625 | 2.1811 | 9.8547 | 51.8553 |
|
82 |
+
| 1.2563 | 30.0 | 33750 | 2.1766 | 9.8346 | 51.7293 |
|
83 |
+
| 1.258 | 31.0 | 34875 | 2.1748 | 9.8204 | 51.6747 |
|
84 |
+
| 1.2391 | 32.0 | 36000 | 2.1708 | 9.8485 | 51.7647 |
|
85 |
+
| 1.2364 | 33.0 | 37125 | 2.1644 | 9.8503 | 51.6713 |
|
86 |
+
| 1.2436 | 34.0 | 38250 | 2.1629 | 9.8457 | 51.76 |
|
87 |
+
| 1.2408 | 35.0 | 39375 | 2.1614 | 9.8899 | 51.6893 |
|
88 |
+
| 1.2564 | 36.0 | 40500 | 2.1591 | 9.8867 | 51.706 |
|
89 |
+
| 1.2318 | 37.0 | 41625 | 2.1575 | 9.866 | 51.782 |
|
90 |
+
| 1.2423 | 38.0 | 42750 | 2.1570 | 9.8756 | 51.8933 |
|
91 |
+
| 1.2399 | 39.0 | 43875 | 2.1558 | 9.8871 | 51.7967 |
|
92 |
+
| 1.2339 | 40.0 | 45000 | 2.1558 | 9.8991 | 51.8287 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.22.1
|
98 |
+
- Pytorch 1.12.1
|
99 |
+
- Datasets 2.5.1
|
100 |
+
- Tokenizers 0.11.0
|