diogopaes10
commited on
Commit
·
3d398e2
1
Parent(s):
9068094
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: 008-microsoft-deberta-v3-base-finetuned-yahoo-800_200
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 008-microsoft-deberta-v3-base-finetuned-yahoo-800_200
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.1139
|
24 |
+
- F1: 0.6463
|
25 |
+
- Accuracy: 0.65
|
26 |
+
- Precision: 0.6514
|
27 |
+
- Recall: 0.65
|
28 |
+
- System Ram Used: 4.2190
|
29 |
+
- System Ram Total: 83.4807
|
30 |
+
- Gpu Ram Allocated: 2.0914
|
31 |
+
- Gpu Ram Cached: 24.6602
|
32 |
+
- Gpu Ram Total: 39.5640
|
33 |
+
- Gpu Utilization: 33
|
34 |
+
- Disk Space Used: 31.6928
|
35 |
+
- Disk Space Total: 78.1898
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 10
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
|
66 |
+
| 2.2992 | 0.52 | 13 | 2.3031 | 0.0182 | 0.1 | 0.01 | 0.1 | 3.9340 | 83.4807 | 2.0915 | 24.6484 | 39.5640 | 50 | 24.7853 | 78.1898 |
|
67 |
+
| 2.3096 | 1.04 | 26 | 2.2984 | 0.0182 | 0.1 | 0.01 | 0.1 | 4.1195 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 43 | 29.6206 | 78.1898 |
|
68 |
+
| 2.2906 | 1.56 | 39 | 2.2852 | 0.0648 | 0.145 | 0.0525 | 0.145 | 4.2050 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 51 | 29.6206 | 78.1898 |
|
69 |
+
| 2.2723 | 2.08 | 52 | 2.2198 | 0.1283 | 0.225 | 0.1625 | 0.225 | 4.2165 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 43 | 31.6924 | 78.1898 |
|
70 |
+
| 2.1387 | 2.6 | 65 | 2.0293 | 0.2580 | 0.335 | 0.2655 | 0.335 | 4.2218 | 83.4807 | 2.0916 | 24.6602 | 39.5640 | 56 | 31.6925 | 78.1898 |
|
71 |
+
| 1.9534 | 3.12 | 78 | 1.8757 | 0.3730 | 0.4 | 0.4419 | 0.4 | 4.2092 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 41 | 31.6925 | 78.1898 |
|
72 |
+
| 1.7689 | 3.64 | 91 | 1.7209 | 0.4443 | 0.48 | 0.5198 | 0.48 | 4.2303 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 46 | 31.6925 | 78.1898 |
|
73 |
+
| 1.6052 | 4.16 | 104 | 1.6318 | 0.5044 | 0.525 | 0.5139 | 0.525 | 4.2297 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 45 | 31.6926 | 78.1898 |
|
74 |
+
| 1.4606 | 4.68 | 117 | 1.4969 | 0.5539 | 0.575 | 0.5788 | 0.575 | 4.2315 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 47 | 31.6926 | 78.1898 |
|
75 |
+
| 1.2963 | 5.2 | 130 | 1.3920 | 0.6037 | 0.61 | 0.6063 | 0.61 | 4.2420 | 83.4807 | 2.0916 | 24.6602 | 39.5640 | 43 | 31.6926 | 78.1898 |
|
76 |
+
| 1.1948 | 5.72 | 143 | 1.3030 | 0.6251 | 0.63 | 0.6292 | 0.63 | 4.2687 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 48 | 31.6926 | 78.1898 |
|
77 |
+
| 1.0248 | 6.24 | 156 | 1.2568 | 0.6184 | 0.625 | 0.6354 | 0.625 | 4.2596 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 50 | 31.6927 | 78.1898 |
|
78 |
+
| 0.9509 | 6.76 | 169 | 1.1911 | 0.6448 | 0.65 | 0.6552 | 0.65 | 4.2625 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 44 | 31.6927 | 78.1898 |
|
79 |
+
| 0.9081 | 7.28 | 182 | 1.1784 | 0.6441 | 0.655 | 0.6450 | 0.655 | 4.1955 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 50 | 31.6927 | 78.1898 |
|
80 |
+
| 0.7629 | 7.8 | 195 | 1.1354 | 0.6598 | 0.655 | 0.6737 | 0.655 | 4.1868 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 44 | 31.6927 | 78.1898 |
|
81 |
+
| 0.7348 | 8.32 | 208 | 1.1369 | 0.6430 | 0.65 | 0.6483 | 0.65 | 4.2168 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 43 | 31.6927 | 78.1898 |
|
82 |
+
| 0.7443 | 8.84 | 221 | 1.1274 | 0.6531 | 0.66 | 0.6576 | 0.66 | 4.2273 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 51 | 31.6927 | 78.1898 |
|
83 |
+
| 0.5945 | 9.36 | 234 | 1.1228 | 0.6640 | 0.67 | 0.6694 | 0.67 | 4.1791 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 44 | 31.6928 | 78.1898 |
|
84 |
+
| 0.6885 | 9.88 | 247 | 1.1145 | 0.6463 | 0.65 | 0.6514 | 0.65 | 4.1849 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 48 | 31.6928 | 78.1898 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.31.0
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.13.1
|
92 |
+
- Tokenizers 0.13.3
|