diogopaes10 commited on
Commit
3d398e2
·
1 Parent(s): 9068094

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: 008-microsoft-deberta-v3-base-finetuned-yahoo-800_200
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 008-microsoft-deberta-v3-base-finetuned-yahoo-800_200
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.1139
24
+ - F1: 0.6463
25
+ - Accuracy: 0.65
26
+ - Precision: 0.6514
27
+ - Recall: 0.65
28
+ - System Ram Used: 4.2190
29
+ - System Ram Total: 83.4807
30
+ - Gpu Ram Allocated: 2.0914
31
+ - Gpu Ram Cached: 24.6602
32
+ - Gpu Ram Total: 39.5640
33
+ - Gpu Utilization: 33
34
+ - Disk Space Used: 31.6928
35
+ - Disk Space Total: 78.1898
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 10
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
66
+ | 2.2992 | 0.52 | 13 | 2.3031 | 0.0182 | 0.1 | 0.01 | 0.1 | 3.9340 | 83.4807 | 2.0915 | 24.6484 | 39.5640 | 50 | 24.7853 | 78.1898 |
67
+ | 2.3096 | 1.04 | 26 | 2.2984 | 0.0182 | 0.1 | 0.01 | 0.1 | 4.1195 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 43 | 29.6206 | 78.1898 |
68
+ | 2.2906 | 1.56 | 39 | 2.2852 | 0.0648 | 0.145 | 0.0525 | 0.145 | 4.2050 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 51 | 29.6206 | 78.1898 |
69
+ | 2.2723 | 2.08 | 52 | 2.2198 | 0.1283 | 0.225 | 0.1625 | 0.225 | 4.2165 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 43 | 31.6924 | 78.1898 |
70
+ | 2.1387 | 2.6 | 65 | 2.0293 | 0.2580 | 0.335 | 0.2655 | 0.335 | 4.2218 | 83.4807 | 2.0916 | 24.6602 | 39.5640 | 56 | 31.6925 | 78.1898 |
71
+ | 1.9534 | 3.12 | 78 | 1.8757 | 0.3730 | 0.4 | 0.4419 | 0.4 | 4.2092 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 41 | 31.6925 | 78.1898 |
72
+ | 1.7689 | 3.64 | 91 | 1.7209 | 0.4443 | 0.48 | 0.5198 | 0.48 | 4.2303 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 46 | 31.6925 | 78.1898 |
73
+ | 1.6052 | 4.16 | 104 | 1.6318 | 0.5044 | 0.525 | 0.5139 | 0.525 | 4.2297 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 45 | 31.6926 | 78.1898 |
74
+ | 1.4606 | 4.68 | 117 | 1.4969 | 0.5539 | 0.575 | 0.5788 | 0.575 | 4.2315 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 47 | 31.6926 | 78.1898 |
75
+ | 1.2963 | 5.2 | 130 | 1.3920 | 0.6037 | 0.61 | 0.6063 | 0.61 | 4.2420 | 83.4807 | 2.0916 | 24.6602 | 39.5640 | 43 | 31.6926 | 78.1898 |
76
+ | 1.1948 | 5.72 | 143 | 1.3030 | 0.6251 | 0.63 | 0.6292 | 0.63 | 4.2687 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 48 | 31.6926 | 78.1898 |
77
+ | 1.0248 | 6.24 | 156 | 1.2568 | 0.6184 | 0.625 | 0.6354 | 0.625 | 4.2596 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 50 | 31.6927 | 78.1898 |
78
+ | 0.9509 | 6.76 | 169 | 1.1911 | 0.6448 | 0.65 | 0.6552 | 0.65 | 4.2625 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 44 | 31.6927 | 78.1898 |
79
+ | 0.9081 | 7.28 | 182 | 1.1784 | 0.6441 | 0.655 | 0.6450 | 0.655 | 4.1955 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 50 | 31.6927 | 78.1898 |
80
+ | 0.7629 | 7.8 | 195 | 1.1354 | 0.6598 | 0.655 | 0.6737 | 0.655 | 4.1868 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 44 | 31.6927 | 78.1898 |
81
+ | 0.7348 | 8.32 | 208 | 1.1369 | 0.6430 | 0.65 | 0.6483 | 0.65 | 4.2168 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 43 | 31.6927 | 78.1898 |
82
+ | 0.7443 | 8.84 | 221 | 1.1274 | 0.6531 | 0.66 | 0.6576 | 0.66 | 4.2273 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 51 | 31.6927 | 78.1898 |
83
+ | 0.5945 | 9.36 | 234 | 1.1228 | 0.6640 | 0.67 | 0.6694 | 0.67 | 4.1791 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 44 | 31.6928 | 78.1898 |
84
+ | 0.6885 | 9.88 | 247 | 1.1145 | 0.6463 | 0.65 | 0.6514 | 0.65 | 4.1849 | 83.4807 | 2.0915 | 24.6602 | 39.5640 | 48 | 31.6928 | 78.1898 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.31.0
90
+ - Pytorch 2.0.1+cu118
91
+ - Datasets 2.13.1
92
+ - Tokenizers 0.13.3