File size: 7,941 Bytes
2f12227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 010-microsoft-deberta-v3-base-finetuned-yahoo-800_200
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 010-microsoft-deberta-v3-base-finetuned-yahoo-800_200

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1327
- F1: 0.6339
- Accuracy: 0.64
- Precision: 0.6436
- Recall: 0.64
- System Ram Used: 4.1191
- System Ram Total: 83.4807
- Gpu Ram Allocated: 2.0916
- Gpu Ram Cached: 24.6602
- Gpu Ram Total: 39.5640
- Gpu Utilization: 46
- Disk Space Used: 42.7346
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 2.3122        | 0.4   | 10   | 2.3038          | 0.0182 | 0.1      | 0.01      | 0.1    | 3.9481          | 83.4807          | 2.0915            | 24.6484        | 39.5640       | 44              | 42.7345         | 78.1898          |
| 2.3122        | 0.8   | 20   | 2.3008          | 0.0182 | 0.1      | 0.01      | 0.1    | 3.9500          | 83.4807          | 2.0916            | 24.6602        | 39.5640       | 64              | 42.7345         | 78.1898          |
| 2.3122        | 1.2   | 30   | 2.2951          | 0.0182 | 0.1      | 0.01      | 0.1    | 3.9885          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 44              | 42.7345         | 78.1898          |
| 2.3122        | 1.6   | 40   | 2.2860          | 0.0830 | 0.15     | 0.0948    | 0.15   | 4.0161          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 43              | 42.7345         | 78.1898          |
| 2.3122        | 2.0   | 50   | 2.2335          | 0.0916 | 0.195    | 0.1010    | 0.195  | 4.0651          | 83.4807          | 2.0916            | 24.6602        | 39.5640       | 43              | 42.7345         | 78.1898          |
| 2.3122        | 2.4   | 60   | 2.1085          | 0.2197 | 0.295    | 0.2090    | 0.295  | 4.0829          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 42              | 42.7345         | 78.1898          |
| 2.3122        | 2.8   | 70   | 1.9703          | 0.2923 | 0.33     | 0.3951    | 0.33   | 4.1017          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 47              | 42.7345         | 78.1898          |
| 2.3122        | 3.2   | 80   | 1.8818          | 0.3441 | 0.395    | 0.4073    | 0.395  | 4.1170          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 49              | 42.7345         | 78.1898          |
| 2.3122        | 3.6   | 90   | 1.7649          | 0.4158 | 0.44     | 0.4853    | 0.44   | 4.1182          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 45              | 42.7345         | 78.1898          |
| 2.3122        | 4.0   | 100  | 1.6408          | 0.5143 | 0.53     | 0.5429    | 0.53   | 4.1156          | 83.4807          | 2.0916            | 24.6602        | 39.5640       | 48              | 42.7345         | 78.1898          |
| 2.3122        | 4.4   | 110  | 1.5896          | 0.5167 | 0.535    | 0.5320    | 0.535  | 4.1162          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 46              | 42.7345         | 78.1898          |
| 2.3122        | 4.8   | 120  | 1.4783          | 0.5627 | 0.575    | 0.5692    | 0.575  | 4.1160          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 51              | 42.7345         | 78.1898          |
| 2.3122        | 5.2   | 130  | 1.3900          | 0.5844 | 0.595    | 0.6033    | 0.595  | 4.1169          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 57              | 42.7345         | 78.1898          |
| 2.3122        | 5.6   | 140  | 1.3547          | 0.6052 | 0.625    | 0.6127    | 0.625  | 4.1181          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 46              | 42.7345         | 78.1898          |
| 2.3122        | 6.0   | 150  | 1.2983          | 0.6032 | 0.6      | 0.6455    | 0.6    | 4.0997          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 48              | 42.7345         | 78.1898          |
| 2.3122        | 6.4   | 160  | 1.2805          | 0.5972 | 0.615    | 0.6058    | 0.615  | 4.1017          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 55              | 42.7345         | 78.1898          |
| 2.3122        | 6.8   | 170  | 1.2105          | 0.6213 | 0.62     | 0.6325    | 0.62   | 4.1238          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 50              | 42.7345         | 78.1898          |
| 2.3122        | 7.2   | 180  | 1.2458          | 0.5944 | 0.615    | 0.5958    | 0.615  | 4.1257          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 45              | 42.7345         | 78.1898          |
| 2.3122        | 7.6   | 190  | 1.1695          | 0.6629 | 0.665    | 0.6736    | 0.665  | 4.1261          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 52              | 42.7345         | 78.1898          |
| 2.3122        | 8.0   | 200  | 1.1737          | 0.6383 | 0.645    | 0.6425    | 0.645  | 4.1259          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 54              | 42.7345         | 78.1898          |
| 2.3122        | 8.4   | 210  | 1.1540          | 0.6347 | 0.635    | 0.6418    | 0.635  | 4.1258          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 47              | 42.7345         | 78.1898          |
| 2.3122        | 8.8   | 220  | 1.1422          | 0.6322 | 0.64     | 0.6413    | 0.64   | 4.1251          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 50              | 42.7346         | 78.1898          |
| 2.3122        | 9.2   | 230  | 1.1422          | 0.6443 | 0.65     | 0.6575    | 0.65   | 4.1251          | 83.4807          | 2.0916            | 24.6602        | 39.5640       | 47              | 42.7346         | 78.1898          |
| 2.3122        | 9.6   | 240  | 1.1345          | 0.6345 | 0.64     | 0.6483    | 0.64   | 4.1032          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 44              | 42.7346         | 78.1898          |
| 2.3122        | 10.0  | 250  | 1.1327          | 0.6339 | 0.64     | 0.6436    | 0.64   | 4.1084          | 83.4807          | 2.0915            | 24.6602        | 39.5640       | 44              | 42.7346         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3