disham993 commited on
Commit
fb36324
·
verified ·
1 Parent(s): 72831cd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ base_model: google-bert/bert-large-uncased
5
+ tags:
6
+ - text-classification
7
+ - bert-large-uncased
8
+ datasets:
9
+ - disham993/ElectricalDeviceFeedbackBalanced
10
+ metrics:
11
+ - epoch: 1.0
12
+ - eval_f1: 0.8665314714124963
13
+ - eval_accuracy: 0.8683431952662722
14
+ - eval_runtime: 2.6138
15
+ - eval_samples_per_second: 517.252
16
+ - eval_steps_per_second: 16.451
17
+ ---
18
+
19
+ # disham993/electrical-classification-bert-large-uncased
20
+
21
+ ## Model description
22
+
23
+ This model is fine-tuned from [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) for text-classification tasks.
24
+
25
+ ## Training Data
26
+
27
+ The model was trained on the disham993/ElectricalDeviceFeedbackBalanced dataset.
28
+
29
+ ## Model Details
30
+ - **Base Model:** google-bert/bert-large-uncased
31
+ - **Task:** text-classification
32
+ - **Language:** en
33
+ - **Dataset:** disham993/ElectricalDeviceFeedbackBalanced
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+ [Please add your training hyperparameters here]
39
+
40
+ ## Evaluation results
41
+
42
+ ### Metrics\n- epoch: 1.0\n- eval_f1: 0.8665314714124963\n- eval_accuracy: 0.8683431952662722\n- eval_runtime: 2.6138\n- eval_samples_per_second: 517.252\n- eval_steps_per_second: 16.451
43
+
44
+ ## Usage
45
+
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModel
48
+
49
+ tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-classification-bert-large-uncased")
50
+ model = AutoModel.from_pretrained("disham993/electrical-classification-bert-large-uncased")
51
+ ```
52
+
53
+ ## Limitations and bias
54
+
55
+ [Add any known limitations or biases of the model]
56
+
57
+ ## Training Infrastructure
58
+
59
+ [Add details about training infrastructure used]
60
+
61
+ ## Last update
62
+
63
+ 2025-01-05