File size: 1,656 Bytes
d2b1d6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
language: en
license: mit
base_model: answerdotai/ModernBERT-base
tags:
- token-classification
- ModernBERT-base
datasets:
- disham993/ElectricalNER
metrics:
- epoch: 1.0
- eval_precision: 0.8935291782453354
- eval_recall: 0.9075806451612904
- eval_f1: 0.9005001000200039
- eval_accuracy: 0.9586046624222324
- eval_runtime: 2.509
- eval_samples_per_second: 601.44
- eval_steps_per_second: 9.566
---
# disham993/electrical-ner-modernbert-base
## Model description
This model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) for token-classification tasks.
## Training Data
The model was trained on the disham993/ElectricalNER dataset.
## Model Details
- **Base Model:** answerdotai/ModernBERT-base
- **Task:** token-classification
- **Language:** en
- **Dataset:** disham993/ElectricalNER
## Training procedure
### Training hyperparameters
[Please add your training hyperparameters here]
## Evaluation results
### Metrics\n- epoch: 1.0\n- eval_precision: 0.8935291782453354\n- eval_recall: 0.9075806451612904\n- eval_f1: 0.9005001000200039\n- eval_accuracy: 0.9586046624222324\n- eval_runtime: 2.509\n- eval_samples_per_second: 601.44\n- eval_steps_per_second: 9.566
## Usage
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-modernbert-base")
model = AutoModel.from_pretrained("disham993/electrical-ner-modernbert-base")
```
## Limitations and bias
[Add any known limitations or biases of the model]
## Training Infrastructure
[Add details about training infrastructure used]
## Last update
2024-12-30
|