--- language: en license: mit base_model: answerdotai/ModernBERT-base tags: - token-classification - ModernBERT-base datasets: - disham993/ElectricalNER metrics: - epoch: 1.0 - eval_precision: 0.8935291782453354 - eval_recall: 0.9075806451612904 - eval_f1: 0.9005001000200039 - eval_accuracy: 0.9586046624222324 - eval_runtime: 2.509 - eval_samples_per_second: 601.44 - eval_steps_per_second: 9.566 --- # disham993/electrical-ner-modernbert-base ## Model description This model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) for token-classification tasks. ## Training Data The model was trained on the disham993/ElectricalNER dataset. ## Model Details - **Base Model:** answerdotai/ModernBERT-base - **Task:** token-classification - **Language:** en - **Dataset:** disham993/ElectricalNER ## Training procedure ### Training hyperparameters [Please add your training hyperparameters here] ## Evaluation results ### Metrics\n- epoch: 1.0\n- eval_precision: 0.8935291782453354\n- eval_recall: 0.9075806451612904\n- eval_f1: 0.9005001000200039\n- eval_accuracy: 0.9586046624222324\n- eval_runtime: 2.509\n- eval_samples_per_second: 601.44\n- eval_steps_per_second: 9.566 ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-modernbert-base") model = AutoModel.from_pretrained("disham993/electrical-ner-modernbert-base") ``` ## Limitations and bias [Add any known limitations or biases of the model] ## Training Infrastructure [Add details about training infrastructure used] ## Last update 2024-12-30