alecocc commited on
Commit
b28447d
·
verified ·
1 Parent(s): 6160bcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -1
README.md CHANGED
@@ -40,4 +40,63 @@ widget:
40
  ---
41
  # Model Card for MedGENIE-fid-flan-t5-base-medqa
42
 
43
- MedGENIE comprises a collection of language models designed to utilize generated contexts, rather than retrieved ones, for addressing multiple-choice open-domain questions in the medical domain. Specifically, MedGENIE-fid-flan-t5-base-medqa is a fusion-in-decoder model based on flan-t5-base architecture, trained on the [MedQA-USMLE](https://huggingface.co/datasets/disi-unibo-nlp/medqa-5-opt-MedGENIE) dataset augmented with artificially generated contexts from PMC-LLaMA-13B. This model achieves a new state-of-the-art performance over the corresponding test set.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ---
41
  # Model Card for MedGENIE-fid-flan-t5-base-medqa
42
 
43
+ MedGENIE comprises a collection of language models designed to utilize generated contexts, rather than retrieved ones, for addressing multiple-choice open-domain questions in the medical domain. Specifically, MedGENIE-fid-flan-t5-base-medqa is a fusion-in-decoder model based on flan-t5-base architecture, trained on the [MedQA-USMLE](https://huggingface.co/datasets/disi-unibo-nlp/medqa-5-opt-MedGENIE) dataset augmented with artificially generated contexts from PMC-LLaMA-13B. This model achieves a new state-of-the-art performance over the corresponding test set.
44
+
45
+ ## Model description
46
+
47
+ - **Language(s) (NLP):** English
48
+ - **License:** MIT
49
+ - **Finetuned from model:** [google/flan-t5-base](https://huggingface.co/google/flan-t5-base)
50
+ - **Repository:** https://github.com/disi-unibo-nlp/medgenie
51
+
52
+ ## Performance
53
+
54
+ At the time of release, MedGENIE-fid-flan-t5-base-medqa is a new lightweight SOTA model on MedQA-USMLS benchmark:
55
+
56
+ | Model | Ground (Source) | Learning | Params | Accuracy |
57
+ |----------------------------------|--------------------|---------------------------|-----------------|-------------------------------|
58
+ | **MedGENIE-FID-Flan-T5** | G (PMC-LLaMA) | Fine-tuned | 250M | **53.1** |
59
+ | Codex\tnote{1} | ∅ | 0-zhot | 175B | 52.5 |
60
+ | Codex\tnote{1} | R (Wikipedia) | 0-shot | 175B | 52.5 |
61
+ | GPT-3.5-Turbo\tnote{6} | R (Wikipedia) | k-shot | -- | 52.3 |
62
+ | MEDITRON\tnote{2} | ∅ | Fine-tuned | 7B | 52.0 |
63
+ | Zephyr-$\beta$ | R (MedWiki) | 2-shot | 7B | 50.4 |
64
+ | BioMedGPT\tnote{3} | ∅ | k-shot | 10B | 50.4 |
65
+ | BioMedLM\tnote{4} | ∅ | Fine-tuned | 2.7B | 50.3 |
66
+ | PMC-LLaMA\tnote{*} | ∅ | Fine-tuned | 13B | 50.2 |
67
+ | LLaMA-2\tnote{2} | ∅ | Fine-tuned | 7B | 49.6 |
68
+ | Zephyr-$\beta$ | ∅ | 2-shot | 7B | 49.6 |
69
+ | Zephyr-$\beta$\tnote{2} | ∅ | 3-shot | 7B | 49.2 |
70
+ | PMC-LLaMA\tnote{2} | ∅ | Fine-tuned | 7B | 49.2 |
71
+ | DRAGON\tnote{7} | R (UMLS) | Fine-tuned | 360M | 47.5 |
72
+ | InstructGPT\tnote{1} | R (Wikipedia) | 0-shot | 175B | 47.3 |
73
+ | Flan-PaLM\tnote{4} | ∅ | 5-shot | 62B | 46.1 |
74
+ | InstructGPT\tnote{1} | ∅ | 0-shot | 175B | 46.0 |
75
+ | VOD\tnote{8} | R (MedWiki) | Fine-tuned | 220M | 45.8 |
76
+ | Vicuna 1.3\tnote{1} | ∅ | 0-shot | 33B | 45.2 |
77
+ | BioLinkBERT\tnote{4} | ∅ | Fine-tuned | 340M | 45.1 |
78
+ | Mistral-Instruct | R (MedWiki) | 2-shot | 7B | 45.1 |
79
+ | Galactica | ∅ | 0-shot | 120B | 44.4 |
80
+ | LLaMA-2\tnote{1} | ∅ | 0-shot | 70B | 43.4 |
81
+ | BioReader\tnote{9} | R (PubMed-RCT) | Fine-tuned | 230M | 43.0 |
82
+ | Guanaco\tnote{1} | ∅ | 0-shot | 33B | 42.9 |
83
+ | LLaMA-2-chat\tnote{1} | ∅ | 0-shot | 70B | 42.3 |
84
+ | Vicuna 1.5\tnote{1} | ∅ | 0-shot | 65B | 41.6 |
85
+ | Mistral-Instruct\tnote{2} | ∅ | 3-shot | 7B | 41.1 |
86
+ | PaLM\tnote{4} | ∅ | 5-shot | 62B | 40.9 |
87
+ | Guanaco\tnote{1} | ∅ | 0-shot | 65B | 40.8 |
88
+ | Falcon-Instruct\tnote{1} | ∅ | 0-shot | 40B | 39.0 |
89
+ | Vicuna 1.3\tnote{1} | ∅ | 0-shot | 13B | 38.7 |
90
+ | GreaseLM\tnote{10} | R (UMLS) | Fine-tuned | 359M | 38.5 |
91
+ | PubMedBERT\tnote{4} | ∅ | Fine-tuned | 110M | 38.1 |
92
+ | QA-GNN\tnote{11} | R (UMLS) | Fine-tuned | 360M | 38.0 |
93
+ | LLaMA-2\tnote{6} | R (Wikipedia) | k-shot | 13B | 37.6 |
94
+ | LLaMA-2-chat | R (MedWiki) | 2-shot | 7B | 37.2 |
95
+ | LLaMA-2-chat | ∅ | 2-shot | 7B | 37.2 |
96
+ | BioBERT\tnote{5} | ∅ | Fine-tuned | 110M | 36.7 |
97
+ | MTP-Instruct\tnote{1} | ∅ | 0-shot | 30B | 35.1 |
98
+ | GPT-Neo\tnote{4} | ∅ | Fine-tuned | 2.5B | 33.3 |
99
+ | LLaMa-2-chat\tnote{1} | ∅ | 0-shot | 13B | 32.2 |
100
+ | LLaMa-2\tnote{1} | ∅ | 0-shot | 13B | 31.1 |
101
+ | GPT-NeoX\tnote{1} | ∅ | 0-shot | 20B | 26.9 |
102
+