File size: 8,754 Bytes
ce5a5b8 86f60e4 78196d3 86f60e4 ce5a5b8 86f60e4 ce5a5b8 86f60e4 ce5a5b8 86f60e4 78196d3 ce5a5b8 86f60e4 ce5a5b8 86f60e4 ce5a5b8 86f60e4 ce5a5b8 86f60e4 a07e465 3c993aa 78196d3 cb04b21 86f60e4 78196d3 86f60e4 78196d3 86f60e4 cb04b21 86f60e4 78196d3 86f60e4 ce5a5b8 86f60e4 cb04b21 86f60e4 cb04b21 86f60e4 78196d3 86f60e4 78196d3 86f60e4 ce5a5b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
base_model: HuggingFaceTB/SmolLM-135M
datasets:
- wikimedia/wikipedia
library_name: Distily
license: creativeml-openrail-m
tags:
- generated_from_trainer
- Distily
base_model_relation: finetune
model-index:
- name: distily_smollm_dataset_sweep
results: []
---
# Summary
Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M)
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.
# Model description
More information needed
# Intended uses & limitations
More information needed
-->
# Model Architecture:
- **Architecture**: `LlamaForCausalLM`
- **Total Parameters**: 81,413,568
- **Data Type (dtype)**: torch.float32
- **Model Size**: 0.30 GB
<details>
<summary>Student Model Details</summary>
```
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(49152, 576)
(layers): ModuleList(
(0-14): 15 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=576, out_features=576, bias=False)
(k_proj): Linear(in_features=576, out_features=192, bias=False)
(v_proj): Linear(in_features=576, out_features=192, bias=False)
(o_proj): Linear(in_features=576, out_features=576, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LigerSwiGLUMLP(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
)
(input_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
(post_attention_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
)
)
(norm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=576, out_features=49152, bias=False)
)
```
</details>
<br/>
# Benchmark Metrics Comparison
- student 0: `dataset_max_seq_length=1024, dataset_sample_size=1000000, dataset_subset=20231101.en, dataset_uri=wikimedia_wikipedia, per_device_train_batch_size=8`
- student 1: `dataset_max_seq_length=1024, dataset_sample_size=1000000, dataset_subset=None, dataset_uri=distily_filtered_redpajama_en, per_device_train_batch_size=8`
- student 2: `dataset_max_seq_length=1024, dataset_sample_size=1000000, dataset_subset=sample-10BT, dataset_uri=HuggingFaceFW_fineweb-edu, per_device_train_batch_size=8`
- student 3: `dataset_max_seq_length=1024, dataset_sample_size=1000000, dataset_subset=sample-10BT, dataset_uri=HuggingFaceFW_fineweb, per_device_train_batch_size=8`
- student 4: `dataset_max_seq_length=1024, dataset_sample_size=1000000, dataset_subset=sample-10BT, dataset_uri=HuggingFaceFW_fineweb, learning_rate=6e-05, per_device_train_batch_size=8`
- student 5: `dataset_max_seq_length=1024, dataset_sample_size=1000000, dataset_subset=sample-10BT, dataset_uri=HuggingFaceFW_fineweb-edu, learning_rate=6e-05, per_device_train_batch_size=8`
- student 6: `dataset_max_seq_length=1024, dataset_sample_size=4000000, dataset_subset=20231101.en, dataset_uri=wikimedia_wikipedia, per_device_train_batch_size=8`
- student 7: `dataset_max_seq_length=1024, dataset_sample_size=4000000, dataset_subset=20231101.en, dataset_uri=wikimedia_wikipedia, learning_rate=6e-05, per_device_train_batch_size=8`
| Metric | teacher | student 0 | student 1 | student 2 | student 3 | student 4 | student 5 | student 6 | student 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| tinyArc.acc_norm,none | 0.37 | 0.303 | 0.295 | 0.302 | 0.26 | 0.269 | **0.319** | 0.286 | 0.299 |
| tinyGSM8k.exact_match,flexible-extract | 0.006 | 0.029 | **0.03** | 0.025 | 0.006 | 0.006 | 0.012 | 0.012 | 0.017 |
| tinyGSM8k.exact_match,strict-match | 0.006 | **0.006** | **0.006** | **0.006** | **0.006** | **0.006** | **0.006** | **0.006** | **0.006** |
| tinyHellaswag.acc_norm,none | 0.452 | 0.341 | 0.281 | 0.327 | 0.3 | 0.303 | 0.301 | **0.364** | 0.356 |
| tinyMMLU.acc_norm,none | 0.341 | 0.276 | 0.281 | 0.31 | 0.286 | 0.279 | 0.292 | 0.295 | **0.328** |
| tinyTruthfulQA.acc,none | 0.38 | **0.463** | 0.447 | 0.423 | 0.419 | 0.421 | 0.427 | 0.44 | 0.436 |
| tinyWinogrande.acc_norm,none | 0.509 | 0.466 | 0.436 | 0.46 | **0.492** | 0.473 | 0.417 | 0.439 | 0.482 |
# Resource Usage
- Max Train VRAM Use: 13.1269 GB
- Available VRAM: 23.4329 GB
- GPUs:
- 1x NVIDIA GeForce RTX 4090
- CPUs: 64
- CPU Memory: 251.7299 GB
- CPU Memory Bandwidth: 1600 GB/s
# Distillation (Teacher -> Student) Architecture Difference:
- **Architecture**: `LlamaForCausalLM` -> `LlamaForCausalLM`
- **Total Parameters**: 134,515,008 -> 81,413,568
- **Data Type (dtype)**: torch.float32 -> torch.float32
- **Model Size**: 0.25 GB -> 0.30 GB
<details>
<summary>Module Diff Details</summary>
```diff
--- teacher model modules
+++ student model modules
@@ -2,7 +2,7 @@
(model): LlamaModel(
(embed_tokens): Embedding(49152, 576)
(layers): ModuleList(
- (0-29): 30 x LlamaDecoderLayer(
+ (0-14): 15 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=576, out_features=576, bias=False)
(k_proj): Linear(in_features=576, out_features=192, bias=False)
@@ -10,17 +10,16 @@
(o_proj): Linear(in_features=576, out_features=576, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
- (mlp): LlamaMLP(
+ (mlp): LigerSwiGLUMLP(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
- (act_fn): SiLU()
)
- (input_layernorm): LlamaRMSNorm((576,), eps=1e-05)
- (post_attention_layernorm): LlamaRMSNorm((576,), eps=1e-05)
+ (input_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
+ (post_attention_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
)
)
- (norm): LlamaRMSNorm((576,), eps=1e-05)
+ (norm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=576, out_features=49152, bias=False)
```
</details>
<br/>
# Train Dataset
Trained on 1,857,304,596 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.
- Num Samples: `3,992,000`
- Subset: `20231101.en`
- Split: `train`
# Training Objective
```
DistillationObjective(
logits_loss_component=LossComponent(
weight=1,
loss_fn='kl'
),
hs_loss_component=LossComponent(
weight=0
),
attn_loss_component=LossComponent(
weight=0
)
)
```
# Hyperparameters
The following hyperparameters were used during training:
<details>
<summary>Expand</summary>
- learning_rate: `6e-05`
- train_batch_size: `8`
- eval_batch_size: `4`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `polynomial`
- lr_scheduler_warmup_ratio: `0.1`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(
logits_loss_component=LossComponent(
weight=1,
loss_fn='kl'
),
hs_loss_component=LossComponent(
weight=0
),
attn_loss_component=LossComponent(
weight=0
)
)`
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7d28e0fc5450>`
- student_model_name_or_path: `None`
- student_config_name_or_path: `None`
- student_model_config: `{'num_hidden_layers': 15}`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `False`
- student_use_liger_kernel: `True`
- teacher_model_name_or_path: `HuggingFaceTB/SmolLM-135M`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `4000000`
- dataset_max_seq_length: `1024`
- dataset_test_size: `0.002`
- dataset_shuffle: `False`
- dataset_shuffle_seed: `42`
- dataset_trust_remote_code: `False`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0.1`
- warmup_steps: `0`
- gradient_checkpointing: `True`
</details>
<br/>
# Framework Versions
- Distily 0.5.0
- Transformers 4.45.0.dev0
- Pytorch 2.5.0.dev20240910+cu121
- Datasets 2.21.0
|