Epoch 0. Batch Size 0. Peers 0.
Browse files- config.json +61 -61
- configuration_gpt_optimized.py +22 -0
- model-00001-of-00002.safetensors +2 -2
- model-00002-of-00002.safetensors +1 -1
- model.safetensors.index.json +5 -1
- modeling_gpt_optimized.py +189 -0
- optimizer.pt +3 -0
config.json
CHANGED
@@ -1,32 +1,32 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_function": "gelu_new",
|
4 |
"all_reduce_scores": {
|
5 |
"0": "NON_PARTICIPATING",
|
6 |
"1": "NON_PARTICIPATING",
|
7 |
"10": "NON_PARTICIPATING",
|
8 |
"100": "NON_PARTICIPATING",
|
9 |
-
"101": "
|
10 |
"102": "NON_PARTICIPATING",
|
11 |
"103": "NON_PARTICIPATING",
|
12 |
-
"104": "
|
13 |
-
"105": "
|
14 |
-
"106": "
|
15 |
"107": "NON_PARTICIPATING",
|
16 |
"108": "NON_PARTICIPATING",
|
17 |
"109": "NON_PARTICIPATING",
|
18 |
-
"11": "
|
19 |
"110": "NON_PARTICIPATING",
|
20 |
"111": "NON_PARTICIPATING",
|
21 |
"112": "NON_PARTICIPATING",
|
22 |
"113": "NON_PARTICIPATING",
|
23 |
-
"114": "
|
24 |
-
"115": "
|
25 |
"116": "NON_PARTICIPATING",
|
26 |
-
"117": "
|
27 |
"118": "NON_PARTICIPATING",
|
28 |
-
"119": "
|
29 |
-
"12": "
|
30 |
"120": "NON_PARTICIPATING",
|
31 |
"121": "NON_PARTICIPATING",
|
32 |
"122": "NON_PARTICIPATING",
|
@@ -37,12 +37,12 @@
|
|
37 |
"127": "NON_PARTICIPATING",
|
38 |
"128": "NON_PARTICIPATING",
|
39 |
"129": "NON_PARTICIPATING",
|
40 |
-
"13": "
|
41 |
"130": "NON_PARTICIPATING",
|
42 |
"131": "NON_PARTICIPATING",
|
43 |
"132": "NON_PARTICIPATING",
|
44 |
"133": "NON_PARTICIPATING",
|
45 |
-
"134": "
|
46 |
"135": "NON_PARTICIPATING",
|
47 |
"136": "NON_PARTICIPATING",
|
48 |
"137": "NON_PARTICIPATING",
|
@@ -50,9 +50,9 @@
|
|
50 |
"139": "NON_PARTICIPATING",
|
51 |
"14": "NON_PARTICIPATING",
|
52 |
"140": "NON_PARTICIPATING",
|
53 |
-
"141": "
|
54 |
"142": "NON_PARTICIPATING",
|
55 |
-
"143": "
|
56 |
"144": "NON_PARTICIPATING",
|
57 |
"145": "NON_PARTICIPATING",
|
58 |
"146": "NON_PARTICIPATING",
|
@@ -61,16 +61,16 @@
|
|
61 |
"149": "NON_PARTICIPATING",
|
62 |
"15": "NON_PARTICIPATING",
|
63 |
"150": "NON_PARTICIPATING",
|
64 |
-
"151": "
|
65 |
"152": "NON_PARTICIPATING",
|
66 |
"153": "NON_PARTICIPATING",
|
67 |
-
"154": "
|
68 |
"155": "NON_PARTICIPATING",
|
69 |
-
"156": "
|
70 |
"157": "NON_PARTICIPATING",
|
71 |
"158": "NON_PARTICIPATING",
|
72 |
-
"159": "
|
73 |
-
"16": "
|
74 |
"160": "NON_PARTICIPATING",
|
75 |
"161": "NON_PARTICIPATING",
|
76 |
"162": "NON_PARTICIPATING",
|
@@ -90,8 +90,8 @@
|
|
90 |
"175": "NON_PARTICIPATING",
|
91 |
"176": "NON_PARTICIPATING",
|
92 |
"177": "NON_PARTICIPATING",
|
93 |
-
"178": "
|
94 |
-
"179": "
|
95 |
"18": "NON_PARTICIPATING",
|
96 |
"180": "NON_PARTICIPATING",
|
97 |
"181": "NON_PARTICIPATING",
|
@@ -109,7 +109,7 @@
|
|
109 |
"192": "NON_PARTICIPATING",
|
110 |
"193": "NON_PARTICIPATING",
|
111 |
"194": "NON_PARTICIPATING",
|
112 |
-
"195": "
|
113 |
"196": "NON_PARTICIPATING",
|
114 |
"197": "NON_PARTICIPATING",
|
115 |
"198": "NON_PARTICIPATING",
|
@@ -117,27 +117,27 @@
|
|
117 |
"2": "NON_PARTICIPATING",
|
118 |
"20": "NON_PARTICIPATING",
|
119 |
"200": "NON_PARTICIPATING",
|
120 |
-
"201": "
|
121 |
-
"202": "
|
122 |
"203": "NON_PARTICIPATING",
|
123 |
-
"204": "
|
124 |
"205": "NON_PARTICIPATING",
|
125 |
"206": "NON_PARTICIPATING",
|
126 |
"207": "NON_PARTICIPATING",
|
127 |
"208": "NON_PARTICIPATING",
|
128 |
-
"209": "
|
129 |
"21": "NON_PARTICIPATING",
|
130 |
"210": "NON_PARTICIPATING",
|
131 |
"211": "NON_PARTICIPATING",
|
132 |
"212": "NON_PARTICIPATING",
|
133 |
-
"213": "
|
134 |
"214": "NON_PARTICIPATING",
|
135 |
"215": "NON_PARTICIPATING",
|
136 |
-
"216": "
|
137 |
"217": "NON_PARTICIPATING",
|
138 |
"218": "NON_PARTICIPATING",
|
139 |
"219": "NON_PARTICIPATING",
|
140 |
-
"22": "
|
141 |
"220": "NON_PARTICIPATING",
|
142 |
"221": "NON_PARTICIPATING",
|
143 |
"222": "NON_PARTICIPATING",
|
@@ -147,20 +147,20 @@
|
|
147 |
"226": "NON_PARTICIPATING",
|
148 |
"227": "NON_PARTICIPATING",
|
149 |
"228": "NON_PARTICIPATING",
|
150 |
-
"229": "
|
151 |
"23": "NON_PARTICIPATING",
|
152 |
"230": "NON_PARTICIPATING",
|
153 |
"231": "NON_PARTICIPATING",
|
154 |
"232": "NON_PARTICIPATING",
|
155 |
"233": "NON_PARTICIPATING",
|
156 |
"234": "NON_PARTICIPATING",
|
157 |
-
"235": "
|
158 |
-
"236": "
|
159 |
"237": "NON_PARTICIPATING",
|
160 |
-
"238": "
|
161 |
-
"239": "
|
162 |
"24": "NON_PARTICIPATING",
|
163 |
-
"240": "
|
164 |
"241": "NON_PARTICIPATING",
|
165 |
"242": "NON_PARTICIPATING",
|
166 |
"243": "NON_PARTICIPATING",
|
@@ -170,7 +170,7 @@
|
|
170 |
"247": "NON_PARTICIPATING",
|
171 |
"248": "NON_PARTICIPATING",
|
172 |
"249": "NON_PARTICIPATING",
|
173 |
-
"25": "
|
174 |
"250": "NON_PARTICIPATING",
|
175 |
"251": "NON_PARTICIPATING",
|
176 |
"252": "NON_PARTICIPATING",
|
@@ -192,71 +192,71 @@
|
|
192 |
"37": "NON_PARTICIPATING",
|
193 |
"38": "NON_PARTICIPATING",
|
194 |
"39": "NON_PARTICIPATING",
|
195 |
-
"4": "
|
196 |
"40": "NON_PARTICIPATING",
|
197 |
"41": "NON_PARTICIPATING",
|
198 |
"42": "NON_PARTICIPATING",
|
199 |
"43": "NON_PARTICIPATING",
|
200 |
"44": "NON_PARTICIPATING",
|
201 |
-
"45": "
|
202 |
"46": "NON_PARTICIPATING",
|
203 |
"47": "NON_PARTICIPATING",
|
204 |
-
"48": "
|
205 |
"49": "NON_PARTICIPATING",
|
206 |
"5": "NON_PARTICIPATING",
|
207 |
"50": "NON_PARTICIPATING",
|
208 |
"51": "NON_PARTICIPATING",
|
209 |
-
"52": "
|
210 |
"53": "NON_PARTICIPATING",
|
211 |
"54": "NON_PARTICIPATING",
|
212 |
"55": "NON_PARTICIPATING",
|
213 |
-
"56": "
|
214 |
"57": "NON_PARTICIPATING",
|
215 |
"58": "NON_PARTICIPATING",
|
216 |
"59": "NON_PARTICIPATING",
|
217 |
-
"6": "
|
218 |
"60": "NON_PARTICIPATING",
|
219 |
"61": "NON_PARTICIPATING",
|
220 |
-
"62": "
|
221 |
-
"63": "
|
222 |
"64": "NON_PARTICIPATING",
|
223 |
-
"65": "
|
224 |
-
"66": "
|
225 |
"67": "NON_PARTICIPATING",
|
226 |
"68": "NON_PARTICIPATING",
|
227 |
"69": "NON_PARTICIPATING",
|
228 |
-
"7": "
|
229 |
"70": "NON_PARTICIPATING",
|
230 |
"71": "NON_PARTICIPATING",
|
231 |
"72": "NON_PARTICIPATING",
|
232 |
"73": "NON_PARTICIPATING",
|
233 |
-
"74": "
|
234 |
-
"75": "
|
235 |
"76": "NON_PARTICIPATING",
|
236 |
-
"77": "
|
237 |
"78": "NON_PARTICIPATING",
|
238 |
"79": "NON_PARTICIPATING",
|
239 |
"8": "NON_PARTICIPATING",
|
240 |
-
"80": "
|
241 |
"81": "NON_PARTICIPATING",
|
242 |
"82": "NON_PARTICIPATING",
|
243 |
"83": "NON_PARTICIPATING",
|
244 |
-
"84": "
|
245 |
-
"85": "
|
246 |
-
"86": "
|
247 |
"87": "NON_PARTICIPATING",
|
248 |
-
"88": "
|
249 |
"89": "NON_PARTICIPATING",
|
250 |
-
"9": "
|
251 |
"90": "NON_PARTICIPATING",
|
252 |
"91": "NON_PARTICIPATING",
|
253 |
"92": "NON_PARTICIPATING",
|
254 |
"93": "NON_PARTICIPATING",
|
255 |
"94": "NON_PARTICIPATING",
|
256 |
"95": "NON_PARTICIPATING",
|
257 |
-
"96": "
|
258 |
"97": "NON_PARTICIPATING",
|
259 |
-
"98": "
|
260 |
"99": "NON_PARTICIPATING"
|
261 |
},
|
262 |
"architectures": [
|
@@ -264,8 +264,8 @@
|
|
264 |
],
|
265 |
"attn_pdrop": 0.1,
|
266 |
"auto_map": {
|
267 |
-
"AutoConfig": "
|
268 |
-
"AutoModelForCausalLM": "
|
269 |
},
|
270 |
"block_size": 1024,
|
271 |
"bos_token_id": 50256,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/root/optimized-gpt2-2b",
|
3 |
"activation_function": "gelu_new",
|
4 |
"all_reduce_scores": {
|
5 |
"0": "NON_PARTICIPATING",
|
6 |
"1": "NON_PARTICIPATING",
|
7 |
"10": "NON_PARTICIPATING",
|
8 |
"100": "NON_PARTICIPATING",
|
9 |
+
"101": "NON_PARTICIPATING",
|
10 |
"102": "NON_PARTICIPATING",
|
11 |
"103": "NON_PARTICIPATING",
|
12 |
+
"104": "NON_PARTICIPATING",
|
13 |
+
"105": "NON_PARTICIPATING",
|
14 |
+
"106": "NON_PARTICIPATING",
|
15 |
"107": "NON_PARTICIPATING",
|
16 |
"108": "NON_PARTICIPATING",
|
17 |
"109": "NON_PARTICIPATING",
|
18 |
+
"11": "NON_PARTICIPATING",
|
19 |
"110": "NON_PARTICIPATING",
|
20 |
"111": "NON_PARTICIPATING",
|
21 |
"112": "NON_PARTICIPATING",
|
22 |
"113": "NON_PARTICIPATING",
|
23 |
+
"114": "NON_PARTICIPATING",
|
24 |
+
"115": "NON_PARTICIPATING",
|
25 |
"116": "NON_PARTICIPATING",
|
26 |
+
"117": "NON_PARTICIPATING",
|
27 |
"118": "NON_PARTICIPATING",
|
28 |
+
"119": "NON_PARTICIPATING",
|
29 |
+
"12": "NON_PARTICIPATING",
|
30 |
"120": "NON_PARTICIPATING",
|
31 |
"121": "NON_PARTICIPATING",
|
32 |
"122": "NON_PARTICIPATING",
|
|
|
37 |
"127": "NON_PARTICIPATING",
|
38 |
"128": "NON_PARTICIPATING",
|
39 |
"129": "NON_PARTICIPATING",
|
40 |
+
"13": "NON_PARTICIPATING",
|
41 |
"130": "NON_PARTICIPATING",
|
42 |
"131": "NON_PARTICIPATING",
|
43 |
"132": "NON_PARTICIPATING",
|
44 |
"133": "NON_PARTICIPATING",
|
45 |
+
"134": "NON_PARTICIPATING",
|
46 |
"135": "NON_PARTICIPATING",
|
47 |
"136": "NON_PARTICIPATING",
|
48 |
"137": "NON_PARTICIPATING",
|
|
|
50 |
"139": "NON_PARTICIPATING",
|
51 |
"14": "NON_PARTICIPATING",
|
52 |
"140": "NON_PARTICIPATING",
|
53 |
+
"141": "NON_PARTICIPATING",
|
54 |
"142": "NON_PARTICIPATING",
|
55 |
+
"143": "NON_PARTICIPATING",
|
56 |
"144": "NON_PARTICIPATING",
|
57 |
"145": "NON_PARTICIPATING",
|
58 |
"146": "NON_PARTICIPATING",
|
|
|
61 |
"149": "NON_PARTICIPATING",
|
62 |
"15": "NON_PARTICIPATING",
|
63 |
"150": "NON_PARTICIPATING",
|
64 |
+
"151": "NON_PARTICIPATING",
|
65 |
"152": "NON_PARTICIPATING",
|
66 |
"153": "NON_PARTICIPATING",
|
67 |
+
"154": "NON_PARTICIPATING",
|
68 |
"155": "NON_PARTICIPATING",
|
69 |
+
"156": "NON_PARTICIPATING",
|
70 |
"157": "NON_PARTICIPATING",
|
71 |
"158": "NON_PARTICIPATING",
|
72 |
+
"159": "NON_PARTICIPATING",
|
73 |
+
"16": "NON_PARTICIPATING",
|
74 |
"160": "NON_PARTICIPATING",
|
75 |
"161": "NON_PARTICIPATING",
|
76 |
"162": "NON_PARTICIPATING",
|
|
|
90 |
"175": "NON_PARTICIPATING",
|
91 |
"176": "NON_PARTICIPATING",
|
92 |
"177": "NON_PARTICIPATING",
|
93 |
+
"178": "NON_PARTICIPATING",
|
94 |
+
"179": "NON_PARTICIPATING",
|
95 |
"18": "NON_PARTICIPATING",
|
96 |
"180": "NON_PARTICIPATING",
|
97 |
"181": "NON_PARTICIPATING",
|
|
|
109 |
"192": "NON_PARTICIPATING",
|
110 |
"193": "NON_PARTICIPATING",
|
111 |
"194": "NON_PARTICIPATING",
|
112 |
+
"195": "NON_PARTICIPATING",
|
113 |
"196": "NON_PARTICIPATING",
|
114 |
"197": "NON_PARTICIPATING",
|
115 |
"198": "NON_PARTICIPATING",
|
|
|
117 |
"2": "NON_PARTICIPATING",
|
118 |
"20": "NON_PARTICIPATING",
|
119 |
"200": "NON_PARTICIPATING",
|
120 |
+
"201": "NON_PARTICIPATING",
|
121 |
+
"202": "NON_PARTICIPATING",
|
122 |
"203": "NON_PARTICIPATING",
|
123 |
+
"204": "NON_PARTICIPATING",
|
124 |
"205": "NON_PARTICIPATING",
|
125 |
"206": "NON_PARTICIPATING",
|
126 |
"207": "NON_PARTICIPATING",
|
127 |
"208": "NON_PARTICIPATING",
|
128 |
+
"209": "NON_PARTICIPATING",
|
129 |
"21": "NON_PARTICIPATING",
|
130 |
"210": "NON_PARTICIPATING",
|
131 |
"211": "NON_PARTICIPATING",
|
132 |
"212": "NON_PARTICIPATING",
|
133 |
+
"213": "NON_PARTICIPATING",
|
134 |
"214": "NON_PARTICIPATING",
|
135 |
"215": "NON_PARTICIPATING",
|
136 |
+
"216": "NON_PARTICIPATING",
|
137 |
"217": "NON_PARTICIPATING",
|
138 |
"218": "NON_PARTICIPATING",
|
139 |
"219": "NON_PARTICIPATING",
|
140 |
+
"22": "NON_PARTICIPATING",
|
141 |
"220": "NON_PARTICIPATING",
|
142 |
"221": "NON_PARTICIPATING",
|
143 |
"222": "NON_PARTICIPATING",
|
|
|
147 |
"226": "NON_PARTICIPATING",
|
148 |
"227": "NON_PARTICIPATING",
|
149 |
"228": "NON_PARTICIPATING",
|
150 |
+
"229": "NON_PARTICIPATING",
|
151 |
"23": "NON_PARTICIPATING",
|
152 |
"230": "NON_PARTICIPATING",
|
153 |
"231": "NON_PARTICIPATING",
|
154 |
"232": "NON_PARTICIPATING",
|
155 |
"233": "NON_PARTICIPATING",
|
156 |
"234": "NON_PARTICIPATING",
|
157 |
+
"235": "NON_PARTICIPATING",
|
158 |
+
"236": "NON_PARTICIPATING",
|
159 |
"237": "NON_PARTICIPATING",
|
160 |
+
"238": "NON_PARTICIPATING",
|
161 |
+
"239": "NON_PARTICIPATING",
|
162 |
"24": "NON_PARTICIPATING",
|
163 |
+
"240": "NON_PARTICIPATING",
|
164 |
"241": "NON_PARTICIPATING",
|
165 |
"242": "NON_PARTICIPATING",
|
166 |
"243": "NON_PARTICIPATING",
|
|
|
170 |
"247": "NON_PARTICIPATING",
|
171 |
"248": "NON_PARTICIPATING",
|
172 |
"249": "NON_PARTICIPATING",
|
173 |
+
"25": "NON_PARTICIPATING",
|
174 |
"250": "NON_PARTICIPATING",
|
175 |
"251": "NON_PARTICIPATING",
|
176 |
"252": "NON_PARTICIPATING",
|
|
|
192 |
"37": "NON_PARTICIPATING",
|
193 |
"38": "NON_PARTICIPATING",
|
194 |
"39": "NON_PARTICIPATING",
|
195 |
+
"4": "NON_PARTICIPATING",
|
196 |
"40": "NON_PARTICIPATING",
|
197 |
"41": "NON_PARTICIPATING",
|
198 |
"42": "NON_PARTICIPATING",
|
199 |
"43": "NON_PARTICIPATING",
|
200 |
"44": "NON_PARTICIPATING",
|
201 |
+
"45": "NON_PARTICIPATING",
|
202 |
"46": "NON_PARTICIPATING",
|
203 |
"47": "NON_PARTICIPATING",
|
204 |
+
"48": "NON_PARTICIPATING",
|
205 |
"49": "NON_PARTICIPATING",
|
206 |
"5": "NON_PARTICIPATING",
|
207 |
"50": "NON_PARTICIPATING",
|
208 |
"51": "NON_PARTICIPATING",
|
209 |
+
"52": "NON_PARTICIPATING",
|
210 |
"53": "NON_PARTICIPATING",
|
211 |
"54": "NON_PARTICIPATING",
|
212 |
"55": "NON_PARTICIPATING",
|
213 |
+
"56": "NON_PARTICIPATING",
|
214 |
"57": "NON_PARTICIPATING",
|
215 |
"58": "NON_PARTICIPATING",
|
216 |
"59": "NON_PARTICIPATING",
|
217 |
+
"6": "NON_PARTICIPATING",
|
218 |
"60": "NON_PARTICIPATING",
|
219 |
"61": "NON_PARTICIPATING",
|
220 |
+
"62": "NON_PARTICIPATING",
|
221 |
+
"63": "NON_PARTICIPATING",
|
222 |
"64": "NON_PARTICIPATING",
|
223 |
+
"65": "NON_PARTICIPATING",
|
224 |
+
"66": "NON_PARTICIPATING",
|
225 |
"67": "NON_PARTICIPATING",
|
226 |
"68": "NON_PARTICIPATING",
|
227 |
"69": "NON_PARTICIPATING",
|
228 |
+
"7": "NON_PARTICIPATING",
|
229 |
"70": "NON_PARTICIPATING",
|
230 |
"71": "NON_PARTICIPATING",
|
231 |
"72": "NON_PARTICIPATING",
|
232 |
"73": "NON_PARTICIPATING",
|
233 |
+
"74": "NON_PARTICIPATING",
|
234 |
+
"75": "NON_PARTICIPATING",
|
235 |
"76": "NON_PARTICIPATING",
|
236 |
+
"77": "NON_PARTICIPATING",
|
237 |
"78": "NON_PARTICIPATING",
|
238 |
"79": "NON_PARTICIPATING",
|
239 |
"8": "NON_PARTICIPATING",
|
240 |
+
"80": "NON_PARTICIPATING",
|
241 |
"81": "NON_PARTICIPATING",
|
242 |
"82": "NON_PARTICIPATING",
|
243 |
"83": "NON_PARTICIPATING",
|
244 |
+
"84": "NON_PARTICIPATING",
|
245 |
+
"85": "NON_PARTICIPATING",
|
246 |
+
"86": "NON_PARTICIPATING",
|
247 |
"87": "NON_PARTICIPATING",
|
248 |
+
"88": "NON_PARTICIPATING",
|
249 |
"89": "NON_PARTICIPATING",
|
250 |
+
"9": "NON_PARTICIPATING",
|
251 |
"90": "NON_PARTICIPATING",
|
252 |
"91": "NON_PARTICIPATING",
|
253 |
"92": "NON_PARTICIPATING",
|
254 |
"93": "NON_PARTICIPATING",
|
255 |
"94": "NON_PARTICIPATING",
|
256 |
"95": "NON_PARTICIPATING",
|
257 |
+
"96": "NON_PARTICIPATING",
|
258 |
"97": "NON_PARTICIPATING",
|
259 |
+
"98": "NON_PARTICIPATING",
|
260 |
"99": "NON_PARTICIPATING"
|
261 |
},
|
262 |
"architectures": [
|
|
|
264 |
],
|
265 |
"attn_pdrop": 0.1,
|
266 |
"auto_map": {
|
267 |
+
"AutoConfig": "configuration_gpt_optimized.GPTOptimConfig",
|
268 |
+
"AutoModelForCausalLM": "modeling_gpt_optimized.GPTOptim"
|
269 |
},
|
270 |
"block_size": 1024,
|
271 |
"bos_token_id": 50256,
|
configuration_gpt_optimized.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, GPT2Config
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class GPTOptimConfig(GPT2Config):
|
6 |
+
model_type = "gpt_optimized"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
block_size: int = 1024, # max sequence length
|
11 |
+
vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
12 |
+
n_layer: int = 16, # number of layers
|
13 |
+
n_head: int = 16, # number of heads
|
14 |
+
n_embd: int = 1024, # embedding dimension
|
15 |
+
**kwargs,
|
16 |
+
):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self.block_size = block_size
|
19 |
+
self.vocab_size = vocab_size
|
20 |
+
self.n_layer = n_layer
|
21 |
+
self.n_head = n_head
|
22 |
+
self.n_embd = n_embd
|
model-00001-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da60df4383c9d634d7cc53c50054860a25201fca04b7ba2222154c341c81cb64
|
3 |
+
size 4975530824
|
model-00002-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3075942944
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40f5cead8254114a990ff56a6870ab9b539eab67512e449d110dffba8fd755c0
|
3 |
size 3075942944
|
model.safetensors.index.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
-
"total_size":
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"model.transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
@@ -533,7 +533,11 @@
|
|
533 |
"model.transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
534 |
"model.transformer.ln_f.bias": "model-00002-of-00002.safetensors",
|
535 |
"model.transformer.ln_f.weight": "model-00002-of-00002.safetensors",
|
|
|
|
|
536 |
"model.transformer.wpe.weight": "model-00001-of-00002.safetensors",
|
|
|
|
|
537 |
"model.transformer.wte.weight": "model-00001-of-00002.safetensors"
|
538 |
}
|
539 |
}
|
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
+
"total_size": 8051414336
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"model.transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
|
|
533 |
"model.transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
534 |
"model.transformer.ln_f.bias": "model-00002-of-00002.safetensors",
|
535 |
"model.transformer.ln_f.weight": "model-00002-of-00002.safetensors",
|
536 |
+
"model.transformer.wpe.norm.bias": "model-00001-of-00002.safetensors",
|
537 |
+
"model.transformer.wpe.norm.weight": "model-00001-of-00002.safetensors",
|
538 |
"model.transformer.wpe.weight": "model-00001-of-00002.safetensors",
|
539 |
+
"model.transformer.wte.norm.bias": "model-00001-of-00002.safetensors",
|
540 |
+
"model.transformer.wte.norm.weight": "model-00001-of-00002.safetensors",
|
541 |
"model.transformer.wte.weight": "model-00001-of-00002.safetensors"
|
542 |
}
|
543 |
}
|
modeling_gpt_optimized.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import bitsandbytes
|
4 |
+
from torch.nn import CrossEntropyLoss, functional as F
|
5 |
+
from transformers import PreTrainedModel, GPT2PreTrainedModel
|
6 |
+
from .configuration_gpt_optimized import GPTOptimConfig
|
7 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
|
8 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
9 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
|
12 |
+
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
13 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
14 |
+
|
15 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
16 |
+
Args:
|
17 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
18 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
19 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
20 |
+
sequence tokens in the vocabulary.
|
21 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
22 |
+
`input_ids`.
|
23 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
24 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
25 |
+
[What are input IDs?](../glossary#input-ids)
|
26 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
27 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
28 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
29 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
30 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
31 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
32 |
+
- 1 for tokens that are **not masked**,
|
33 |
+
- 0 for tokens that are **masked**.
|
34 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
35 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
36 |
+
`len(past_key_values) + len(input_ids)`
|
37 |
+
[What are attention masks?](../glossary#attention-mask)
|
38 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
39 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
40 |
+
1]`:
|
41 |
+
- 0 corresponds to a *sentence A* token,
|
42 |
+
- 1 corresponds to a *sentence B* token.
|
43 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
44 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
45 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
46 |
+
config.max_position_embeddings - 1]`.
|
47 |
+
[What are position IDs?](../glossary#position-ids)
|
48 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
49 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
50 |
+
- 1 indicates the head is **not masked**,
|
51 |
+
- 0 indicates the head is **masked**.
|
52 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
53 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
54 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
55 |
+
model's internal embedding lookup matrix.
|
56 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
57 |
+
`past_key_values`).
|
58 |
+
use_cache (`bool`, *optional*):
|
59 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
60 |
+
`past_key_values`).
|
61 |
+
output_attentions (`bool`, *optional*):
|
62 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
63 |
+
tensors for more detail.
|
64 |
+
output_hidden_states (`bool`, *optional*):
|
65 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
66 |
+
more detail.
|
67 |
+
return_dict (`bool`, *optional*):
|
68 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
69 |
+
"""
|
70 |
+
|
71 |
+
class CausalSelfAttention(nn.Module):
|
72 |
+
|
73 |
+
def __init__(self, config):
|
74 |
+
super().__init__()
|
75 |
+
assert config.n_embd % config.n_head == 0
|
76 |
+
# key, query, value projections for all heads, but in a batch
|
77 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
78 |
+
# output projection
|
79 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
80 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
81 |
+
# regularization
|
82 |
+
self.n_head = config.n_head
|
83 |
+
self.n_embd = config.n_embd
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
87 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
88 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
89 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
90 |
+
qkv = self.c_attn(x)
|
91 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
92 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
93 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
94 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
95 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
|
96 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
97 |
+
# output projection
|
98 |
+
y = self.c_proj(y)
|
99 |
+
return y
|
100 |
+
|
101 |
+
class MLP(nn.Module):
|
102 |
+
|
103 |
+
def __init__(self, config):
|
104 |
+
super().__init__()
|
105 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
106 |
+
self.gelu = nn.GELU(approximate='tanh')
|
107 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
108 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
x = self.c_fc(x)
|
112 |
+
x = self.gelu(x)
|
113 |
+
x = self.c_proj(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
class Block(nn.Module):
|
117 |
+
|
118 |
+
def __init__(self, config):
|
119 |
+
super().__init__()
|
120 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
121 |
+
self.attn = CausalSelfAttention(config)
|
122 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
123 |
+
self.mlp = MLP(config)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
x = x + self.attn(self.ln_1(x))
|
127 |
+
x = x + self.mlp(self.ln_2(x))
|
128 |
+
return x
|
129 |
+
|
130 |
+
class GPT(nn.Module):
|
131 |
+
|
132 |
+
def __init__(self, config):
|
133 |
+
super().__init__()
|
134 |
+
self.config = config
|
135 |
+
|
136 |
+
self.transformer = nn.ModuleDict(dict(
|
137 |
+
wte = bitsandbytes.nn.StableEmbedding(config.vocab_size, config.n_embd),
|
138 |
+
wpe = bitsandbytes.nn.StableEmbedding(config.block_size, config.n_embd),
|
139 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
140 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
141 |
+
))
|
142 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
143 |
+
|
144 |
+
# weight sharing scheme
|
145 |
+
self.transformer.wte.weight = self.lm_head.weight
|
146 |
+
|
147 |
+
# init params
|
148 |
+
self.apply(self._init_weights)
|
149 |
+
|
150 |
+
def _init_weights(self, module):
|
151 |
+
if isinstance(module, nn.Linear):
|
152 |
+
std = 0.02
|
153 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
154 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
155 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
156 |
+
if module.bias is not None:
|
157 |
+
torch.nn.init.zeros_(module.bias)
|
158 |
+
elif isinstance(module, nn.Embedding):
|
159 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
160 |
+
|
161 |
+
class GPTOptim(GPT2PreTrainedModel):
|
162 |
+
config_class = GPTOptimConfig
|
163 |
+
|
164 |
+
def __init__(self, config):
|
165 |
+
super().__init__(config)
|
166 |
+
self.model = GPT(
|
167 |
+
config
|
168 |
+
)
|
169 |
+
self.config = config
|
170 |
+
|
171 |
+
def forward(self, input_ids, labels=None):
|
172 |
+
# input_ids is of shape (B, T)
|
173 |
+
B, T = input_ids.size()
|
174 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
175 |
+
# forward the token and posisition embeddings
|
176 |
+
pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device) # shape (T)
|
177 |
+
pos_emb = self.model.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
178 |
+
tok_emb = self.model.transformer.wte(input_ids) # token embeddings of shape (B, T, n_embd)
|
179 |
+
x = tok_emb + pos_emb
|
180 |
+
# forward the blocks of the transformer
|
181 |
+
for block in self.model.transformer.h:
|
182 |
+
x = block(x)
|
183 |
+
# forward the final layernorm and the classifier
|
184 |
+
x = self.model.transformer.ln_f(x)
|
185 |
+
logits = self.model.lm_head(x) # (B, T, vocab_size)
|
186 |
+
loss = None
|
187 |
+
if labels is not None:
|
188 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=self.config.eos_token_id)
|
189 |
+
return logits, loss
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c1c3e9b7f72886b3928354c660c77cc64217de83bab4aece73321c1d91dfecc
|
3 |
+
size 2536
|