Initial commit.
Browse files- README.md +0 -0
- config.json +111 -0
- eval.log +234 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +23 -0
- trainer_state.json +232 -0
- training_args.bin +3 -0
README.md
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "albert-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"AlbertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0,
|
7 |
+
"bos_token_id": 2,
|
8 |
+
"classifier_dropout_prob": 0.1,
|
9 |
+
"down_scale_factor": 1,
|
10 |
+
"embedding_size": 128,
|
11 |
+
"eos_token_id": 3,
|
12 |
+
"gap_size": 0,
|
13 |
+
"hidden_act": "gelu_new",
|
14 |
+
"hidden_dropout_prob": 0,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"id2label": {
|
17 |
+
"0": "O",
|
18 |
+
"1": "B-PERSON",
|
19 |
+
"2": "I-PERSON",
|
20 |
+
"3": "B-NORP",
|
21 |
+
"4": "I-NORP",
|
22 |
+
"5": "B-FAC",
|
23 |
+
"6": "I-FAC",
|
24 |
+
"7": "B-ORG",
|
25 |
+
"8": "I-ORG",
|
26 |
+
"9": "B-GPE",
|
27 |
+
"10": "I-GPE",
|
28 |
+
"11": "B-LOC",
|
29 |
+
"12": "I-LOC",
|
30 |
+
"13": "B-PRODUCT",
|
31 |
+
"14": "I-PRODUCT",
|
32 |
+
"15": "B-DATE",
|
33 |
+
"16": "I-DATE",
|
34 |
+
"17": "B-TIME",
|
35 |
+
"18": "I-TIME",
|
36 |
+
"19": "B-PERCENT",
|
37 |
+
"20": "I-PERCENT",
|
38 |
+
"21": "B-MONEY",
|
39 |
+
"22": "I-MONEY",
|
40 |
+
"23": "B-QUANTITY",
|
41 |
+
"24": "I-QUANTITY",
|
42 |
+
"25": "B-ORDINAL",
|
43 |
+
"26": "I-ORDINAL",
|
44 |
+
"27": "B-CARDINAL",
|
45 |
+
"28": "I-CARDINAL",
|
46 |
+
"29": "B-EVENT",
|
47 |
+
"30": "I-EVENT",
|
48 |
+
"31": "B-WORK_OF_ART",
|
49 |
+
"32": "I-WORK_OF_ART",
|
50 |
+
"33": "B-LAW",
|
51 |
+
"34": "I-LAW",
|
52 |
+
"35": "B-LANGUAGE",
|
53 |
+
"36": "I-LANGUAGE"
|
54 |
+
},
|
55 |
+
"initializer_range": 0.02,
|
56 |
+
"inner_group_num": 1,
|
57 |
+
"intermediate_size": 3072,
|
58 |
+
"label2id": {
|
59 |
+
"B-CARDINAL": 27,
|
60 |
+
"B-DATE": 15,
|
61 |
+
"B-EVENT": 29,
|
62 |
+
"B-FAC": 5,
|
63 |
+
"B-GPE": 9,
|
64 |
+
"B-LANGUAGE": 35,
|
65 |
+
"B-LAW": 33,
|
66 |
+
"B-LOC": 11,
|
67 |
+
"B-MONEY": 21,
|
68 |
+
"B-NORP": 3,
|
69 |
+
"B-ORDINAL": 25,
|
70 |
+
"B-ORG": 7,
|
71 |
+
"B-PERCENT": 19,
|
72 |
+
"B-PERSON": 1,
|
73 |
+
"B-PRODUCT": 13,
|
74 |
+
"B-QUANTITY": 23,
|
75 |
+
"B-TIME": 17,
|
76 |
+
"B-WORK_OF_ART": 31,
|
77 |
+
"I-CARDINAL": 28,
|
78 |
+
"I-DATE": 16,
|
79 |
+
"I-EVENT": 30,
|
80 |
+
"I-FAC": 6,
|
81 |
+
"I-GPE": 10,
|
82 |
+
"I-LANGUAGE": 36,
|
83 |
+
"I-LAW": 34,
|
84 |
+
"I-LOC": 12,
|
85 |
+
"I-MONEY": 22,
|
86 |
+
"I-NORP": 4,
|
87 |
+
"I-ORDINAL": 26,
|
88 |
+
"I-ORG": 8,
|
89 |
+
"I-PERCENT": 20,
|
90 |
+
"I-PERSON": 2,
|
91 |
+
"I-PRODUCT": 14,
|
92 |
+
"I-QUANTITY": 24,
|
93 |
+
"I-TIME": 18,
|
94 |
+
"I-WORK_OF_ART": 32,
|
95 |
+
"O": 0
|
96 |
+
},
|
97 |
+
"layer_norm_eps": 1e-12,
|
98 |
+
"max_position_embeddings": 512,
|
99 |
+
"model_type": "albert",
|
100 |
+
"net_structure_type": 0,
|
101 |
+
"num_attention_heads": 12,
|
102 |
+
"num_hidden_groups": 1,
|
103 |
+
"num_hidden_layers": 12,
|
104 |
+
"num_memory_blocks": 0,
|
105 |
+
"pad_token_id": 0,
|
106 |
+
"position_embedding_type": "absolute",
|
107 |
+
"torch_dtype": "float32",
|
108 |
+
"transformers_version": "4.20.0",
|
109 |
+
"type_vocab_size": 2,
|
110 |
+
"vocab_size": 30000
|
111 |
+
}
|
eval.log
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-07-03 15:51:20,416 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
|
2 |
+
2022-07-03 15:51:26,630 - __main__ - INFO - Dataset({
|
3 |
+
features: ['id', 'words', 'ner_tags'],
|
4 |
+
num_rows: 75187
|
5 |
+
})
|
6 |
+
2022-07-03 15:51:27,367 - __main__ - INFO - Dataset({
|
7 |
+
features: ['id', 'words', 'ner_tags'],
|
8 |
+
num_rows: 9479
|
9 |
+
})
|
10 |
+
2022-07-03 15:51:27,370 - transformers.tokenization_utils_base - INFO - Didn't find file models/albert-base-v2_1656839871.089586/checkpoint-14100/spiece.model. We won't load it.
|
11 |
+
2022-07-03 15:51:27,370 - transformers.tokenization_utils_base - INFO - Didn't find file models/albert-base-v2_1656839871.089586/checkpoint-14100/added_tokens.json. We won't load it.
|
12 |
+
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file None
|
13 |
+
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/tokenizer.json
|
14 |
+
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file None
|
15 |
+
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/special_tokens_map.json
|
16 |
+
2022-07-03 15:51:27,372 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/tokenizer_config.json
|
17 |
+
2022-07-03 15:51:27,422 - __main__ - INFO - {'input_ids': [[2, 98, 825, 16, 1912, 13, 60, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 95, 22719, 102, 10275, 42, 20, 1455, 21, 621, 1322, 16, 464, 998, 13, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 13, 14178, 595, 19045, 27, 14, 374, 1073, 16, 998, 13, 45, 10987, 4584, 16, 5466, 7065, 1286, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1288, 2263, 27, 5466, 7065, 1286, 25, 14, 4908, 20, 14, 1874, 12272, 4632, 13, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 32, 25, 1869, 16, 21, 1256, 13, 18, 14305, 13, 15, 2277, 6621, 1355, 13, 15, 21, 2329, 560, 5515, 17, 13339, 1710, 13, 15, 17, 14, 374, 769, 13, 15, 497, 89, 564, 13, 9, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
|
18 |
+
2022-07-03 15:51:27,422 - __main__ - INFO - ['[CLS]', '▁what', '▁kind', '▁of', '▁memory', '▁', '?', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
|
19 |
+
2022-07-03 15:51:27,422 - __main__ - INFO - ['[CLS]', '▁we', '▁respectful', 'ly', '▁invite', '▁you', '▁to', '▁watch', '▁a', '▁special', '▁edition', '▁of', '▁across', '▁china', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
|
20 |
+
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁', 'ww', '▁ii', '▁landmarks', '▁on', '▁the', '▁great', '▁earth', '▁of', '▁china', '▁', ':', '▁eternal', '▁memories', '▁of', '▁tai', 'hang', '▁mountain', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
|
21 |
+
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁standing', '▁tall', '▁on', '▁tai', 'hang', '▁mountain', '▁is', '▁the', '▁monument', '▁to', '▁the', '▁hundred', '▁regiments', '▁offensive', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
|
22 |
+
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁it', '▁is', '▁composed', '▁of', '▁a', '▁primary', '▁', 's', 'tele', '▁', ',', '▁secondary', '▁ste', 'les', '▁', ',', '▁a', '▁huge', '▁round', '▁sculpture', '▁and', '▁beacon', '▁tower', '▁', ',', '▁and', '▁the', '▁great', '▁wall', '▁', ',', '▁among', '▁other', '▁things', '▁', '.', '[SEP]']
|
23 |
+
2022-07-03 15:51:27,423 - __main__ - INFO - -------------
|
24 |
+
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁we', '▁respectful', 'ly', '▁invite', '▁you', '▁to', '▁watch', '▁a', '▁special', '▁edition', '▁of', '▁across', '▁china', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
|
25 |
+
2022-07-03 15:51:27,423 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
|
26 |
+
2022-07-03 15:51:27,427 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f8c9a20af70> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
|
27 |
+
2022-07-03 15:51:32,943 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[2, 98, 825, 16, 1912, 13, 60, 3], [2, 95, 22719, 102, 10275, 42, 20, 1455, 21, 621, 1322, 16, 464, 998, 13, 9, 3], [2, 13, 14178, 595, 19045, 27, 14, 374, 1073, 16, 998, 13, 45, 10987, 4584, 16, 5466, 7065, 1286, 3], [2, 1288, 2263, 27, 5466, 7065, 1286, 25, 14, 4908, 20, 14, 1874, 12272, 4632, 13, 9, 3], [2, 32, 25, 1869, 16, 21, 1256, 13, 18, 14305, 13, 15, 2277, 6621, 1355, 13, 15, 21, 2329, 560, 5515, 17, 13339, 1710, 13, 15, 17, 14, 374, 769, 13, 15, 497, 89, 564, 13, 9, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100, -100], [-100, 31, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0, -100, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, -100, 0, -100, 0, 0, -100, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, -100, 0, 31, 32, 32, 0, -100, 0, 0, 0, 0, -100, -100]]}
|
28 |
+
2022-07-03 15:51:35,822 - transformers.configuration_utils - INFO - loading configuration file models/albert-base-v2_1656839871.089586/checkpoint-14100/config.json
|
29 |
+
2022-07-03 15:51:35,828 - transformers.configuration_utils - INFO - Model config AlbertConfig {
|
30 |
+
"_name_or_path": "models/albert-base-v2_1656839871.089586/checkpoint-14100",
|
31 |
+
"architectures": [
|
32 |
+
"AlbertForTokenClassification"
|
33 |
+
],
|
34 |
+
"attention_probs_dropout_prob": 0,
|
35 |
+
"bos_token_id": 2,
|
36 |
+
"classifier_dropout_prob": 0.1,
|
37 |
+
"down_scale_factor": 1,
|
38 |
+
"embedding_size": 128,
|
39 |
+
"eos_token_id": 3,
|
40 |
+
"gap_size": 0,
|
41 |
+
"hidden_act": "gelu_new",
|
42 |
+
"hidden_dropout_prob": 0,
|
43 |
+
"hidden_size": 768,
|
44 |
+
"id2label": {
|
45 |
+
"0": "O",
|
46 |
+
"1": "B-PERSON",
|
47 |
+
"2": "I-PERSON",
|
48 |
+
"3": "B-NORP",
|
49 |
+
"4": "I-NORP",
|
50 |
+
"5": "B-FAC",
|
51 |
+
"6": "I-FAC",
|
52 |
+
"7": "B-ORG",
|
53 |
+
"8": "I-ORG",
|
54 |
+
"9": "B-GPE",
|
55 |
+
"10": "I-GPE",
|
56 |
+
"11": "B-LOC",
|
57 |
+
"12": "I-LOC",
|
58 |
+
"13": "B-PRODUCT",
|
59 |
+
"14": "I-PRODUCT",
|
60 |
+
"15": "B-DATE",
|
61 |
+
"16": "I-DATE",
|
62 |
+
"17": "B-TIME",
|
63 |
+
"18": "I-TIME",
|
64 |
+
"19": "B-PERCENT",
|
65 |
+
"20": "I-PERCENT",
|
66 |
+
"21": "B-MONEY",
|
67 |
+
"22": "I-MONEY",
|
68 |
+
"23": "B-QUANTITY",
|
69 |
+
"24": "I-QUANTITY",
|
70 |
+
"25": "B-ORDINAL",
|
71 |
+
"26": "I-ORDINAL",
|
72 |
+
"27": "B-CARDINAL",
|
73 |
+
"28": "I-CARDINAL",
|
74 |
+
"29": "B-EVENT",
|
75 |
+
"30": "I-EVENT",
|
76 |
+
"31": "B-WORK_OF_ART",
|
77 |
+
"32": "I-WORK_OF_ART",
|
78 |
+
"33": "B-LAW",
|
79 |
+
"34": "I-LAW",
|
80 |
+
"35": "B-LANGUAGE",
|
81 |
+
"36": "I-LANGUAGE"
|
82 |
+
},
|
83 |
+
"initializer_range": 0.02,
|
84 |
+
"inner_group_num": 1,
|
85 |
+
"intermediate_size": 3072,
|
86 |
+
"label2id": {
|
87 |
+
"B-CARDINAL": 27,
|
88 |
+
"B-DATE": 15,
|
89 |
+
"B-EVENT": 29,
|
90 |
+
"B-FAC": 5,
|
91 |
+
"B-GPE": 9,
|
92 |
+
"B-LANGUAGE": 35,
|
93 |
+
"B-LAW": 33,
|
94 |
+
"B-LOC": 11,
|
95 |
+
"B-MONEY": 21,
|
96 |
+
"B-NORP": 3,
|
97 |
+
"B-ORDINAL": 25,
|
98 |
+
"B-ORG": 7,
|
99 |
+
"B-PERCENT": 19,
|
100 |
+
"B-PERSON": 1,
|
101 |
+
"B-PRODUCT": 13,
|
102 |
+
"B-QUANTITY": 23,
|
103 |
+
"B-TIME": 17,
|
104 |
+
"B-WORK_OF_ART": 31,
|
105 |
+
"I-CARDINAL": 28,
|
106 |
+
"I-DATE": 16,
|
107 |
+
"I-EVENT": 30,
|
108 |
+
"I-FAC": 6,
|
109 |
+
"I-GPE": 10,
|
110 |
+
"I-LANGUAGE": 36,
|
111 |
+
"I-LAW": 34,
|
112 |
+
"I-LOC": 12,
|
113 |
+
"I-MONEY": 22,
|
114 |
+
"I-NORP": 4,
|
115 |
+
"I-ORDINAL": 26,
|
116 |
+
"I-ORG": 8,
|
117 |
+
"I-PERCENT": 20,
|
118 |
+
"I-PERSON": 2,
|
119 |
+
"I-PRODUCT": 14,
|
120 |
+
"I-QUANTITY": 24,
|
121 |
+
"I-TIME": 18,
|
122 |
+
"I-WORK_OF_ART": 32,
|
123 |
+
"O": 0
|
124 |
+
},
|
125 |
+
"layer_norm_eps": 1e-12,
|
126 |
+
"max_position_embeddings": 512,
|
127 |
+
"model_type": "albert",
|
128 |
+
"net_structure_type": 0,
|
129 |
+
"num_attention_heads": 12,
|
130 |
+
"num_hidden_groups": 1,
|
131 |
+
"num_hidden_layers": 12,
|
132 |
+
"num_memory_blocks": 0,
|
133 |
+
"pad_token_id": 0,
|
134 |
+
"position_embedding_type": "absolute",
|
135 |
+
"torch_dtype": "float32",
|
136 |
+
"transformers_version": "4.20.0",
|
137 |
+
"type_vocab_size": 2,
|
138 |
+
"vocab_size": 30000
|
139 |
+
}
|
140 |
+
|
141 |
+
2022-07-03 15:51:35,912 - transformers.modeling_utils - INFO - loading weights file models/albert-base-v2_1656839871.089586/checkpoint-14100/pytorch_model.bin
|
142 |
+
2022-07-03 15:51:36,021 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing AlbertForTokenClassification.
|
143 |
+
|
144 |
+
2022-07-03 15:51:36,022 - transformers.modeling_utils - INFO - All the weights of AlbertForTokenClassification were initialized from the model checkpoint at models/albert-base-v2_1656839871.089586/checkpoint-14100.
|
145 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use AlbertForTokenClassification for predictions without further training.
|
146 |
+
2022-07-03 15:51:36,022 - __main__ - INFO - AlbertForTokenClassification(
|
147 |
+
(albert): AlbertModel(
|
148 |
+
(embeddings): AlbertEmbeddings(
|
149 |
+
(word_embeddings): Embedding(30000, 128, padding_idx=0)
|
150 |
+
(position_embeddings): Embedding(512, 128)
|
151 |
+
(token_type_embeddings): Embedding(2, 128)
|
152 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
153 |
+
(dropout): Dropout(p=0, inplace=False)
|
154 |
+
)
|
155 |
+
(encoder): AlbertTransformer(
|
156 |
+
(embedding_hidden_mapping_in): Linear(in_features=128, out_features=768, bias=True)
|
157 |
+
(albert_layer_groups): ModuleList(
|
158 |
+
(0): AlbertLayerGroup(
|
159 |
+
(albert_layers): ModuleList(
|
160 |
+
(0): AlbertLayer(
|
161 |
+
(full_layer_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
162 |
+
(attention): AlbertAttention(
|
163 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
165 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
166 |
+
(attention_dropout): Dropout(p=0, inplace=False)
|
167 |
+
(output_dropout): Dropout(p=0, inplace=False)
|
168 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
169 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
170 |
+
)
|
171 |
+
(ffn): Linear(in_features=768, out_features=3072, bias=True)
|
172 |
+
(ffn_output): Linear(in_features=3072, out_features=768, bias=True)
|
173 |
+
(activation): NewGELUActivation()
|
174 |
+
(dropout): Dropout(p=0, inplace=False)
|
175 |
+
)
|
176 |
+
)
|
177 |
+
)
|
178 |
+
)
|
179 |
+
)
|
180 |
+
)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
(classifier): Linear(in_features=768, out_features=37, bias=True)
|
183 |
+
)
|
184 |
+
2022-07-03 15:51:36,022 - __main__ - INFO - CONFIGS:{
|
185 |
+
"output_dir": "./models/finetuned-base-uncased_1656843680.4141676",
|
186 |
+
"per_device_train_batch_size": 16,
|
187 |
+
"per_device_eval_batch_size": 16,
|
188 |
+
"save_total_limit": 2,
|
189 |
+
"num_train_epochs": 3,
|
190 |
+
"seed": 1,
|
191 |
+
"load_best_model_at_end": true,
|
192 |
+
"evaluation_strategy": "epoch",
|
193 |
+
"save_strategy": "epoch",
|
194 |
+
"learning_rate": 2e-05,
|
195 |
+
"weight_decay": 0.01,
|
196 |
+
"logging_steps": 469.0
|
197 |
+
}
|
198 |
+
2022-07-03 15:51:36,023 - transformers.training_args - INFO - PyTorch: setting up devices
|
199 |
+
2022-07-03 15:51:36,070 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
200 |
+
2022-07-03 15:51:36,075 - __main__ - INFO - [[ MODEL EVALUATION ]]
|
201 |
+
2022-07-03 15:51:36,075 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `AlbertForTokenClassification.forward` and have been ignored: id, words, ner_tags. If id, words, ner_tags are not expected by `AlbertForTokenClassification.forward`, you can safely ignore this message.
|
202 |
+
2022-07-03 15:51:36,077 - transformers.trainer - INFO - ***** Running Evaluation *****
|
203 |
+
2022-07-03 15:51:36,077 - transformers.trainer - INFO - Num examples = 9479
|
204 |
+
2022-07-03 15:51:36,078 - transformers.trainer - INFO - Batch size = 16
|
205 |
+
2022-07-03 16:02:02,467 - __main__ - INFO - {'eval_loss': 0.08666322380304337, 'eval_precision': 0.8620168813860506, 'eval_recall': 0.8618637292351425, 'eval_f1': 0.8619402985074628, 'eval_accuracy': 0.9780515276066022, 'eval_runtime': 626.3804, 'eval_samples_per_second': 15.133, 'eval_steps_per_second': 0.947, 'step': 0}
|
206 |
+
2022-07-03 16:02:02,468 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `AlbertForTokenClassification.forward` and have been ignored: id, words, ner_tags. If id, words, ner_tags are not expected by `AlbertForTokenClassification.forward`, you can safely ignore this message.
|
207 |
+
2022-07-03 16:02:02,471 - transformers.trainer - INFO - ***** Running Prediction *****
|
208 |
+
2022-07-03 16:02:02,471 - transformers.trainer - INFO - Num examples = 9479
|
209 |
+
2022-07-03 16:02:02,471 - transformers.trainer - INFO - Batch size = 16
|
210 |
+
2022-07-03 16:12:35,933 - __main__ - INFO - precision recall f1-score support
|
211 |
+
|
212 |
+
CARDINAL 0.84 0.83 0.83 935
|
213 |
+
DATE 0.84 0.87 0.86 1602
|
214 |
+
EVENT 0.61 0.52 0.56 63
|
215 |
+
FAC 0.54 0.59 0.56 135
|
216 |
+
GPE 0.95 0.94 0.95 2240
|
217 |
+
LANGUAGE 0.85 0.50 0.63 22
|
218 |
+
LAW 0.56 0.57 0.57 40
|
219 |
+
LOC 0.61 0.65 0.63 179
|
220 |
+
MONEY 0.85 0.88 0.86 314
|
221 |
+
NORP 0.88 0.92 0.90 841
|
222 |
+
ORDINAL 0.78 0.86 0.81 195
|
223 |
+
ORG 0.84 0.81 0.82 1795
|
224 |
+
PERCENT 0.88 0.87 0.88 349
|
225 |
+
PERSON 0.94 0.92 0.93 1988
|
226 |
+
PRODUCT 0.57 0.53 0.55 76
|
227 |
+
QUANTITY 0.77 0.81 0.79 105
|
228 |
+
TIME 0.59 0.66 0.62 212
|
229 |
+
WORK_OF_ART 0.60 0.52 0.56 166
|
230 |
+
|
231 |
+
micro avg 0.86 0.86 0.86 11257
|
232 |
+
macro avg 0.75 0.74 0.74 11257
|
233 |
+
weighted avg 0.86 0.86 0.86 11257
|
234 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8de2b6a7780b1ca9b38a0a34f6bd5e8003378e955a637b4ce4e3c97910f9f7f8
|
3 |
+
size 44498135
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ceb5f98e7b998ad8337ebed923c3ea142c9ee62b5bd132058e0fd660c83dd81
|
3 |
+
size 14503
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0271a42487a5a379bf223d761cfc585dcba1a6069b012d2a634c31973187a24e
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "[MASK]",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "[SEP]",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"eos_token": "[SEP]",
|
6 |
+
"keep_accents": false,
|
7 |
+
"mask_token": {
|
8 |
+
"__type": "AddedToken",
|
9 |
+
"content": "[MASK]",
|
10 |
+
"lstrip": true,
|
11 |
+
"normalized": false,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"model_max_length": 512,
|
16 |
+
"name_or_path": "albert-base-v2",
|
17 |
+
"pad_token": "<pad>",
|
18 |
+
"remove_space": true,
|
19 |
+
"sep_token": "[SEP]",
|
20 |
+
"special_tokens_map_file": null,
|
21 |
+
"tokenizer_class": "AlbertTokenizer",
|
22 |
+
"unk_token": "<unk>"
|
23 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.08603910356760025,
|
3 |
+
"best_model_checkpoint": "./models/albert-base-v2_1656839871.089586/checkpoint-9400",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"global_step": 14100,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.1,
|
12 |
+
"learning_rate": 1.9334751773049647e-05,
|
13 |
+
"loss": 0.2491,
|
14 |
+
"step": 469
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.2,
|
18 |
+
"learning_rate": 1.866950354609929e-05,
|
19 |
+
"loss": 0.1368,
|
20 |
+
"step": 938
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.3,
|
24 |
+
"learning_rate": 1.8004255319148936e-05,
|
25 |
+
"loss": 0.1139,
|
26 |
+
"step": 1407
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.4,
|
30 |
+
"learning_rate": 1.7339007092198585e-05,
|
31 |
+
"loss": 0.1082,
|
32 |
+
"step": 1876
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.5,
|
36 |
+
"learning_rate": 1.667375886524823e-05,
|
37 |
+
"loss": 0.0974,
|
38 |
+
"step": 2345
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.6,
|
42 |
+
"learning_rate": 1.6008510638297874e-05,
|
43 |
+
"loss": 0.0892,
|
44 |
+
"step": 2814
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.7,
|
48 |
+
"learning_rate": 1.534326241134752e-05,
|
49 |
+
"loss": 0.0941,
|
50 |
+
"step": 3283
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.8,
|
54 |
+
"learning_rate": 1.4678014184397164e-05,
|
55 |
+
"loss": 0.0826,
|
56 |
+
"step": 3752
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.9,
|
60 |
+
"learning_rate": 1.401276595744681e-05,
|
61 |
+
"loss": 0.0806,
|
62 |
+
"step": 4221
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 1.0,
|
66 |
+
"learning_rate": 1.3347517730496456e-05,
|
67 |
+
"loss": 0.082,
|
68 |
+
"step": 4690
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 1.0,
|
72 |
+
"eval_accuracy": 0.9746784684424369,
|
73 |
+
"eval_f1": 0.8338050592605697,
|
74 |
+
"eval_loss": 0.0911484956741333,
|
75 |
+
"eval_precision": 0.8302069572875386,
|
76 |
+
"eval_recall": 0.8374344852092032,
|
77 |
+
"eval_runtime": 37.0605,
|
78 |
+
"eval_samples_per_second": 255.771,
|
79 |
+
"eval_steps_per_second": 16.001,
|
80 |
+
"step": 4700
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.1,
|
84 |
+
"learning_rate": 1.26822695035461e-05,
|
85 |
+
"loss": 0.0686,
|
86 |
+
"step": 5159
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.2,
|
90 |
+
"learning_rate": 1.2017021276595745e-05,
|
91 |
+
"loss": 0.0645,
|
92 |
+
"step": 5628
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 1.3,
|
96 |
+
"learning_rate": 1.1351773049645392e-05,
|
97 |
+
"loss": 0.0638,
|
98 |
+
"step": 6097
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 1.4,
|
102 |
+
"learning_rate": 1.0686524822695037e-05,
|
103 |
+
"loss": 0.0606,
|
104 |
+
"step": 6566
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 1.5,
|
108 |
+
"learning_rate": 1.0021276595744682e-05,
|
109 |
+
"loss": 0.0616,
|
110 |
+
"step": 7035
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 1.6,
|
114 |
+
"learning_rate": 9.356028368794327e-06,
|
115 |
+
"loss": 0.0579,
|
116 |
+
"step": 7504
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 1.7,
|
120 |
+
"learning_rate": 8.690780141843971e-06,
|
121 |
+
"loss": 0.0561,
|
122 |
+
"step": 7973
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 1.8,
|
126 |
+
"learning_rate": 8.025531914893618e-06,
|
127 |
+
"loss": 0.0565,
|
128 |
+
"step": 8442
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.9,
|
132 |
+
"learning_rate": 7.360283687943263e-06,
|
133 |
+
"loss": 0.0551,
|
134 |
+
"step": 8911
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.0,
|
138 |
+
"learning_rate": 6.695035460992908e-06,
|
139 |
+
"loss": 0.0592,
|
140 |
+
"step": 9380
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.0,
|
144 |
+
"eval_accuracy": 0.9760701501954842,
|
145 |
+
"eval_f1": 0.8429752066115702,
|
146 |
+
"eval_loss": 0.08603910356760025,
|
147 |
+
"eval_precision": 0.8525483783047152,
|
148 |
+
"eval_recall": 0.8336146397796926,
|
149 |
+
"eval_runtime": 36.5619,
|
150 |
+
"eval_samples_per_second": 259.259,
|
151 |
+
"eval_steps_per_second": 16.219,
|
152 |
+
"step": 9400
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.1,
|
156 |
+
"learning_rate": 6.029787234042554e-06,
|
157 |
+
"loss": 0.0406,
|
158 |
+
"step": 9849
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 2.2,
|
162 |
+
"learning_rate": 5.3645390070921985e-06,
|
163 |
+
"loss": 0.0387,
|
164 |
+
"step": 10318
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 2.3,
|
168 |
+
"learning_rate": 4.699290780141844e-06,
|
169 |
+
"loss": 0.0399,
|
170 |
+
"step": 10787
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.39,
|
174 |
+
"learning_rate": 4.03404255319149e-06,
|
175 |
+
"loss": 0.0407,
|
176 |
+
"step": 11256
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 2.49,
|
180 |
+
"learning_rate": 3.368794326241135e-06,
|
181 |
+
"loss": 0.0394,
|
182 |
+
"step": 11725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 2.59,
|
186 |
+
"learning_rate": 2.70354609929078e-06,
|
187 |
+
"loss": 0.0369,
|
188 |
+
"step": 12194
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 2.69,
|
192 |
+
"learning_rate": 2.0382978723404254e-06,
|
193 |
+
"loss": 0.0408,
|
194 |
+
"step": 12663
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 2.79,
|
198 |
+
"learning_rate": 1.373049645390071e-06,
|
199 |
+
"loss": 0.0363,
|
200 |
+
"step": 13132
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 2.89,
|
204 |
+
"learning_rate": 7.078014184397164e-07,
|
205 |
+
"loss": 0.0392,
|
206 |
+
"step": 13601
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 2.99,
|
210 |
+
"learning_rate": 4.2553191489361707e-08,
|
211 |
+
"loss": 0.0392,
|
212 |
+
"step": 14070
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 3.0,
|
216 |
+
"eval_accuracy": 0.9780515276066022,
|
217 |
+
"eval_f1": 0.8619402985074628,
|
218 |
+
"eval_loss": 0.08666320890188217,
|
219 |
+
"eval_precision": 0.8620168813860506,
|
220 |
+
"eval_recall": 0.8618637292351425,
|
221 |
+
"eval_runtime": 36.7418,
|
222 |
+
"eval_samples_per_second": 257.989,
|
223 |
+
"eval_steps_per_second": 16.14,
|
224 |
+
"step": 14100
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"max_steps": 14100,
|
228 |
+
"num_train_epochs": 3,
|
229 |
+
"total_flos": 580572089788770.0,
|
230 |
+
"trial_name": null,
|
231 |
+
"trial_params": null
|
232 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15c7912e3146ffbf0b4944c488054f98500ed7228181655063dab2a1d36f7001
|
3 |
+
size 3311
|