djagatiya commited on
Commit
cd2b30a
1 Parent(s): bf0fc3a

Initial commit.

Browse files
README.md ADDED
File without changes
config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "albert-base-v2",
3
+ "architectures": [
4
+ "AlbertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "O",
18
+ "1": "B-PERSON",
19
+ "2": "I-PERSON",
20
+ "3": "B-NORP",
21
+ "4": "I-NORP",
22
+ "5": "B-FAC",
23
+ "6": "I-FAC",
24
+ "7": "B-ORG",
25
+ "8": "I-ORG",
26
+ "9": "B-GPE",
27
+ "10": "I-GPE",
28
+ "11": "B-LOC",
29
+ "12": "I-LOC",
30
+ "13": "B-PRODUCT",
31
+ "14": "I-PRODUCT",
32
+ "15": "B-DATE",
33
+ "16": "I-DATE",
34
+ "17": "B-TIME",
35
+ "18": "I-TIME",
36
+ "19": "B-PERCENT",
37
+ "20": "I-PERCENT",
38
+ "21": "B-MONEY",
39
+ "22": "I-MONEY",
40
+ "23": "B-QUANTITY",
41
+ "24": "I-QUANTITY",
42
+ "25": "B-ORDINAL",
43
+ "26": "I-ORDINAL",
44
+ "27": "B-CARDINAL",
45
+ "28": "I-CARDINAL",
46
+ "29": "B-EVENT",
47
+ "30": "I-EVENT",
48
+ "31": "B-WORK_OF_ART",
49
+ "32": "I-WORK_OF_ART",
50
+ "33": "B-LAW",
51
+ "34": "I-LAW",
52
+ "35": "B-LANGUAGE",
53
+ "36": "I-LANGUAGE"
54
+ },
55
+ "initializer_range": 0.02,
56
+ "inner_group_num": 1,
57
+ "intermediate_size": 3072,
58
+ "label2id": {
59
+ "B-CARDINAL": 27,
60
+ "B-DATE": 15,
61
+ "B-EVENT": 29,
62
+ "B-FAC": 5,
63
+ "B-GPE": 9,
64
+ "B-LANGUAGE": 35,
65
+ "B-LAW": 33,
66
+ "B-LOC": 11,
67
+ "B-MONEY": 21,
68
+ "B-NORP": 3,
69
+ "B-ORDINAL": 25,
70
+ "B-ORG": 7,
71
+ "B-PERCENT": 19,
72
+ "B-PERSON": 1,
73
+ "B-PRODUCT": 13,
74
+ "B-QUANTITY": 23,
75
+ "B-TIME": 17,
76
+ "B-WORK_OF_ART": 31,
77
+ "I-CARDINAL": 28,
78
+ "I-DATE": 16,
79
+ "I-EVENT": 30,
80
+ "I-FAC": 6,
81
+ "I-GPE": 10,
82
+ "I-LANGUAGE": 36,
83
+ "I-LAW": 34,
84
+ "I-LOC": 12,
85
+ "I-MONEY": 22,
86
+ "I-NORP": 4,
87
+ "I-ORDINAL": 26,
88
+ "I-ORG": 8,
89
+ "I-PERCENT": 20,
90
+ "I-PERSON": 2,
91
+ "I-PRODUCT": 14,
92
+ "I-QUANTITY": 24,
93
+ "I-TIME": 18,
94
+ "I-WORK_OF_ART": 32,
95
+ "O": 0
96
+ },
97
+ "layer_norm_eps": 1e-12,
98
+ "max_position_embeddings": 512,
99
+ "model_type": "albert",
100
+ "net_structure_type": 0,
101
+ "num_attention_heads": 12,
102
+ "num_hidden_groups": 1,
103
+ "num_hidden_layers": 12,
104
+ "num_memory_blocks": 0,
105
+ "pad_token_id": 0,
106
+ "position_embedding_type": "absolute",
107
+ "torch_dtype": "float32",
108
+ "transformers_version": "4.20.0",
109
+ "type_vocab_size": 2,
110
+ "vocab_size": 30000
111
+ }
eval.log ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-07-03 15:51:20,416 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
2
+ 2022-07-03 15:51:26,630 - __main__ - INFO - Dataset({
3
+ features: ['id', 'words', 'ner_tags'],
4
+ num_rows: 75187
5
+ })
6
+ 2022-07-03 15:51:27,367 - __main__ - INFO - Dataset({
7
+ features: ['id', 'words', 'ner_tags'],
8
+ num_rows: 9479
9
+ })
10
+ 2022-07-03 15:51:27,370 - transformers.tokenization_utils_base - INFO - Didn't find file models/albert-base-v2_1656839871.089586/checkpoint-14100/spiece.model. We won't load it.
11
+ 2022-07-03 15:51:27,370 - transformers.tokenization_utils_base - INFO - Didn't find file models/albert-base-v2_1656839871.089586/checkpoint-14100/added_tokens.json. We won't load it.
12
+ 2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file None
13
+ 2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/tokenizer.json
14
+ 2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file None
15
+ 2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/special_tokens_map.json
16
+ 2022-07-03 15:51:27,372 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/tokenizer_config.json
17
+ 2022-07-03 15:51:27,422 - __main__ - INFO - {'input_ids': [[2, 98, 825, 16, 1912, 13, 60, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 95, 22719, 102, 10275, 42, 20, 1455, 21, 621, 1322, 16, 464, 998, 13, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 13, 14178, 595, 19045, 27, 14, 374, 1073, 16, 998, 13, 45, 10987, 4584, 16, 5466, 7065, 1286, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1288, 2263, 27, 5466, 7065, 1286, 25, 14, 4908, 20, 14, 1874, 12272, 4632, 13, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 32, 25, 1869, 16, 21, 1256, 13, 18, 14305, 13, 15, 2277, 6621, 1355, 13, 15, 21, 2329, 560, 5515, 17, 13339, 1710, 13, 15, 17, 14, 374, 769, 13, 15, 497, 89, 564, 13, 9, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
18
+ 2022-07-03 15:51:27,422 - __main__ - INFO - ['[CLS]', '▁what', '▁kind', '▁of', '▁memory', '▁', '?', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
19
+ 2022-07-03 15:51:27,422 - __main__ - INFO - ['[CLS]', '▁we', '▁respectful', 'ly', '▁invite', '▁you', '▁to', '▁watch', '▁a', '▁special', '▁edition', '▁of', '▁across', '▁china', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
20
+ 2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁', 'ww', '▁ii', '▁landmarks', '▁on', '▁the', '▁great', '▁earth', '▁of', '▁china', '▁', ':', '▁eternal', '▁memories', '▁of', '▁tai', 'hang', '▁mountain', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
21
+ 2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁standing', '▁tall', '▁on', '▁tai', 'hang', '▁mountain', '▁is', '▁the', '▁monument', '▁to', '▁the', '▁hundred', '▁regiments', '▁offensive', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
22
+ 2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁it', '▁is', '▁composed', '▁of', '▁a', '▁primary', '▁', 's', 'tele', '▁', ',', '▁secondary', '▁ste', 'les', '▁', ',', '▁a', '▁huge', '▁round', '▁sculpture', '▁and', '▁beacon', '▁tower', '▁', ',', '▁and', '▁the', '▁great', '▁wall', '▁', ',', '▁among', '▁other', '▁things', '▁', '.', '[SEP]']
23
+ 2022-07-03 15:51:27,423 - __main__ - INFO - -------------
24
+ 2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁we', '▁respectful', 'ly', '▁invite', '▁you', '▁to', '▁watch', '▁a', '▁special', '▁edition', '▁of', '▁across', '▁china', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
25
+ 2022-07-03 15:51:27,423 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
26
+ 2022-07-03 15:51:27,427 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f8c9a20af70> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
27
+ 2022-07-03 15:51:32,943 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[2, 98, 825, 16, 1912, 13, 60, 3], [2, 95, 22719, 102, 10275, 42, 20, 1455, 21, 621, 1322, 16, 464, 998, 13, 9, 3], [2, 13, 14178, 595, 19045, 27, 14, 374, 1073, 16, 998, 13, 45, 10987, 4584, 16, 5466, 7065, 1286, 3], [2, 1288, 2263, 27, 5466, 7065, 1286, 25, 14, 4908, 20, 14, 1874, 12272, 4632, 13, 9, 3], [2, 32, 25, 1869, 16, 21, 1256, 13, 18, 14305, 13, 15, 2277, 6621, 1355, 13, 15, 21, 2329, 560, 5515, 17, 13339, 1710, 13, 15, 17, 14, 374, 769, 13, 15, 497, 89, 564, 13, 9, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100, -100], [-100, 31, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0, -100, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, -100, 0, -100, 0, 0, -100, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, -100, 0, 31, 32, 32, 0, -100, 0, 0, 0, 0, -100, -100]]}
28
+ 2022-07-03 15:51:35,822 - transformers.configuration_utils - INFO - loading configuration file models/albert-base-v2_1656839871.089586/checkpoint-14100/config.json
29
+ 2022-07-03 15:51:35,828 - transformers.configuration_utils - INFO - Model config AlbertConfig {
30
+ "_name_or_path": "models/albert-base-v2_1656839871.089586/checkpoint-14100",
31
+ "architectures": [
32
+ "AlbertForTokenClassification"
33
+ ],
34
+ "attention_probs_dropout_prob": 0,
35
+ "bos_token_id": 2,
36
+ "classifier_dropout_prob": 0.1,
37
+ "down_scale_factor": 1,
38
+ "embedding_size": 128,
39
+ "eos_token_id": 3,
40
+ "gap_size": 0,
41
+ "hidden_act": "gelu_new",
42
+ "hidden_dropout_prob": 0,
43
+ "hidden_size": 768,
44
+ "id2label": {
45
+ "0": "O",
46
+ "1": "B-PERSON",
47
+ "2": "I-PERSON",
48
+ "3": "B-NORP",
49
+ "4": "I-NORP",
50
+ "5": "B-FAC",
51
+ "6": "I-FAC",
52
+ "7": "B-ORG",
53
+ "8": "I-ORG",
54
+ "9": "B-GPE",
55
+ "10": "I-GPE",
56
+ "11": "B-LOC",
57
+ "12": "I-LOC",
58
+ "13": "B-PRODUCT",
59
+ "14": "I-PRODUCT",
60
+ "15": "B-DATE",
61
+ "16": "I-DATE",
62
+ "17": "B-TIME",
63
+ "18": "I-TIME",
64
+ "19": "B-PERCENT",
65
+ "20": "I-PERCENT",
66
+ "21": "B-MONEY",
67
+ "22": "I-MONEY",
68
+ "23": "B-QUANTITY",
69
+ "24": "I-QUANTITY",
70
+ "25": "B-ORDINAL",
71
+ "26": "I-ORDINAL",
72
+ "27": "B-CARDINAL",
73
+ "28": "I-CARDINAL",
74
+ "29": "B-EVENT",
75
+ "30": "I-EVENT",
76
+ "31": "B-WORK_OF_ART",
77
+ "32": "I-WORK_OF_ART",
78
+ "33": "B-LAW",
79
+ "34": "I-LAW",
80
+ "35": "B-LANGUAGE",
81
+ "36": "I-LANGUAGE"
82
+ },
83
+ "initializer_range": 0.02,
84
+ "inner_group_num": 1,
85
+ "intermediate_size": 3072,
86
+ "label2id": {
87
+ "B-CARDINAL": 27,
88
+ "B-DATE": 15,
89
+ "B-EVENT": 29,
90
+ "B-FAC": 5,
91
+ "B-GPE": 9,
92
+ "B-LANGUAGE": 35,
93
+ "B-LAW": 33,
94
+ "B-LOC": 11,
95
+ "B-MONEY": 21,
96
+ "B-NORP": 3,
97
+ "B-ORDINAL": 25,
98
+ "B-ORG": 7,
99
+ "B-PERCENT": 19,
100
+ "B-PERSON": 1,
101
+ "B-PRODUCT": 13,
102
+ "B-QUANTITY": 23,
103
+ "B-TIME": 17,
104
+ "B-WORK_OF_ART": 31,
105
+ "I-CARDINAL": 28,
106
+ "I-DATE": 16,
107
+ "I-EVENT": 30,
108
+ "I-FAC": 6,
109
+ "I-GPE": 10,
110
+ "I-LANGUAGE": 36,
111
+ "I-LAW": 34,
112
+ "I-LOC": 12,
113
+ "I-MONEY": 22,
114
+ "I-NORP": 4,
115
+ "I-ORDINAL": 26,
116
+ "I-ORG": 8,
117
+ "I-PERCENT": 20,
118
+ "I-PERSON": 2,
119
+ "I-PRODUCT": 14,
120
+ "I-QUANTITY": 24,
121
+ "I-TIME": 18,
122
+ "I-WORK_OF_ART": 32,
123
+ "O": 0
124
+ },
125
+ "layer_norm_eps": 1e-12,
126
+ "max_position_embeddings": 512,
127
+ "model_type": "albert",
128
+ "net_structure_type": 0,
129
+ "num_attention_heads": 12,
130
+ "num_hidden_groups": 1,
131
+ "num_hidden_layers": 12,
132
+ "num_memory_blocks": 0,
133
+ "pad_token_id": 0,
134
+ "position_embedding_type": "absolute",
135
+ "torch_dtype": "float32",
136
+ "transformers_version": "4.20.0",
137
+ "type_vocab_size": 2,
138
+ "vocab_size": 30000
139
+ }
140
+
141
+ 2022-07-03 15:51:35,912 - transformers.modeling_utils - INFO - loading weights file models/albert-base-v2_1656839871.089586/checkpoint-14100/pytorch_model.bin
142
+ 2022-07-03 15:51:36,021 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing AlbertForTokenClassification.
143
+
144
+ 2022-07-03 15:51:36,022 - transformers.modeling_utils - INFO - All the weights of AlbertForTokenClassification were initialized from the model checkpoint at models/albert-base-v2_1656839871.089586/checkpoint-14100.
145
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use AlbertForTokenClassification for predictions without further training.
146
+ 2022-07-03 15:51:36,022 - __main__ - INFO - AlbertForTokenClassification(
147
+ (albert): AlbertModel(
148
+ (embeddings): AlbertEmbeddings(
149
+ (word_embeddings): Embedding(30000, 128, padding_idx=0)
150
+ (position_embeddings): Embedding(512, 128)
151
+ (token_type_embeddings): Embedding(2, 128)
152
+ (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
153
+ (dropout): Dropout(p=0, inplace=False)
154
+ )
155
+ (encoder): AlbertTransformer(
156
+ (embedding_hidden_mapping_in): Linear(in_features=128, out_features=768, bias=True)
157
+ (albert_layer_groups): ModuleList(
158
+ (0): AlbertLayerGroup(
159
+ (albert_layers): ModuleList(
160
+ (0): AlbertLayer(
161
+ (full_layer_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
162
+ (attention): AlbertAttention(
163
+ (query): Linear(in_features=768, out_features=768, bias=True)
164
+ (key): Linear(in_features=768, out_features=768, bias=True)
165
+ (value): Linear(in_features=768, out_features=768, bias=True)
166
+ (attention_dropout): Dropout(p=0, inplace=False)
167
+ (output_dropout): Dropout(p=0, inplace=False)
168
+ (dense): Linear(in_features=768, out_features=768, bias=True)
169
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
170
+ )
171
+ (ffn): Linear(in_features=768, out_features=3072, bias=True)
172
+ (ffn_output): Linear(in_features=3072, out_features=768, bias=True)
173
+ (activation): NewGELUActivation()
174
+ (dropout): Dropout(p=0, inplace=False)
175
+ )
176
+ )
177
+ )
178
+ )
179
+ )
180
+ )
181
+ (dropout): Dropout(p=0.1, inplace=False)
182
+ (classifier): Linear(in_features=768, out_features=37, bias=True)
183
+ )
184
+ 2022-07-03 15:51:36,022 - __main__ - INFO - CONFIGS:{
185
+ "output_dir": "./models/finetuned-base-uncased_1656843680.4141676",
186
+ "per_device_train_batch_size": 16,
187
+ "per_device_eval_batch_size": 16,
188
+ "save_total_limit": 2,
189
+ "num_train_epochs": 3,
190
+ "seed": 1,
191
+ "load_best_model_at_end": true,
192
+ "evaluation_strategy": "epoch",
193
+ "save_strategy": "epoch",
194
+ "learning_rate": 2e-05,
195
+ "weight_decay": 0.01,
196
+ "logging_steps": 469.0
197
+ }
198
+ 2022-07-03 15:51:36,023 - transformers.training_args - INFO - PyTorch: setting up devices
199
+ 2022-07-03 15:51:36,070 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
200
+ 2022-07-03 15:51:36,075 - __main__ - INFO - [[ MODEL EVALUATION ]]
201
+ 2022-07-03 15:51:36,075 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `AlbertForTokenClassification.forward` and have been ignored: id, words, ner_tags. If id, words, ner_tags are not expected by `AlbertForTokenClassification.forward`, you can safely ignore this message.
202
+ 2022-07-03 15:51:36,077 - transformers.trainer - INFO - ***** Running Evaluation *****
203
+ 2022-07-03 15:51:36,077 - transformers.trainer - INFO - Num examples = 9479
204
+ 2022-07-03 15:51:36,078 - transformers.trainer - INFO - Batch size = 16
205
+ 2022-07-03 16:02:02,467 - __main__ - INFO - {'eval_loss': 0.08666322380304337, 'eval_precision': 0.8620168813860506, 'eval_recall': 0.8618637292351425, 'eval_f1': 0.8619402985074628, 'eval_accuracy': 0.9780515276066022, 'eval_runtime': 626.3804, 'eval_samples_per_second': 15.133, 'eval_steps_per_second': 0.947, 'step': 0}
206
+ 2022-07-03 16:02:02,468 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `AlbertForTokenClassification.forward` and have been ignored: id, words, ner_tags. If id, words, ner_tags are not expected by `AlbertForTokenClassification.forward`, you can safely ignore this message.
207
+ 2022-07-03 16:02:02,471 - transformers.trainer - INFO - ***** Running Prediction *****
208
+ 2022-07-03 16:02:02,471 - transformers.trainer - INFO - Num examples = 9479
209
+ 2022-07-03 16:02:02,471 - transformers.trainer - INFO - Batch size = 16
210
+ 2022-07-03 16:12:35,933 - __main__ - INFO - precision recall f1-score support
211
+
212
+ CARDINAL 0.84 0.83 0.83 935
213
+ DATE 0.84 0.87 0.86 1602
214
+ EVENT 0.61 0.52 0.56 63
215
+ FAC 0.54 0.59 0.56 135
216
+ GPE 0.95 0.94 0.95 2240
217
+ LANGUAGE 0.85 0.50 0.63 22
218
+ LAW 0.56 0.57 0.57 40
219
+ LOC 0.61 0.65 0.63 179
220
+ MONEY 0.85 0.88 0.86 314
221
+ NORP 0.88 0.92 0.90 841
222
+ ORDINAL 0.78 0.86 0.81 195
223
+ ORG 0.84 0.81 0.82 1795
224
+ PERCENT 0.88 0.87 0.88 349
225
+ PERSON 0.94 0.92 0.93 1988
226
+ PRODUCT 0.57 0.53 0.55 76
227
+ QUANTITY 0.77 0.81 0.79 105
228
+ TIME 0.59 0.66 0.62 212
229
+ WORK_OF_ART 0.60 0.52 0.56 166
230
+
231
+ micro avg 0.86 0.86 0.86 11257
232
+ macro avg 0.75 0.74 0.74 11257
233
+ weighted avg 0.86 0.86 0.86 11257
234
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de2b6a7780b1ca9b38a0a34f6bd5e8003378e955a637b4ce4e3c97910f9f7f8
3
+ size 44498135
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ceb5f98e7b998ad8337ebed923c3ea142c9ee62b5bd132058e0fd660c83dd81
3
+ size 14503
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0271a42487a5a379bf223d761cfc585dcba1a6069b012d2a634c31973187a24e
3
+ size 623
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": {
6
+ "content": "[MASK]",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "[SEP]",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "eos_token": "[SEP]",
6
+ "keep_accents": false,
7
+ "mask_token": {
8
+ "__type": "AddedToken",
9
+ "content": "[MASK]",
10
+ "lstrip": true,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "model_max_length": 512,
16
+ "name_or_path": "albert-base-v2",
17
+ "pad_token": "<pad>",
18
+ "remove_space": true,
19
+ "sep_token": "[SEP]",
20
+ "special_tokens_map_file": null,
21
+ "tokenizer_class": "AlbertTokenizer",
22
+ "unk_token": "<unk>"
23
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.08603910356760025,
3
+ "best_model_checkpoint": "./models/albert-base-v2_1656839871.089586/checkpoint-9400",
4
+ "epoch": 3.0,
5
+ "global_step": 14100,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.1,
12
+ "learning_rate": 1.9334751773049647e-05,
13
+ "loss": 0.2491,
14
+ "step": 469
15
+ },
16
+ {
17
+ "epoch": 0.2,
18
+ "learning_rate": 1.866950354609929e-05,
19
+ "loss": 0.1368,
20
+ "step": 938
21
+ },
22
+ {
23
+ "epoch": 0.3,
24
+ "learning_rate": 1.8004255319148936e-05,
25
+ "loss": 0.1139,
26
+ "step": 1407
27
+ },
28
+ {
29
+ "epoch": 0.4,
30
+ "learning_rate": 1.7339007092198585e-05,
31
+ "loss": 0.1082,
32
+ "step": 1876
33
+ },
34
+ {
35
+ "epoch": 0.5,
36
+ "learning_rate": 1.667375886524823e-05,
37
+ "loss": 0.0974,
38
+ "step": 2345
39
+ },
40
+ {
41
+ "epoch": 0.6,
42
+ "learning_rate": 1.6008510638297874e-05,
43
+ "loss": 0.0892,
44
+ "step": 2814
45
+ },
46
+ {
47
+ "epoch": 0.7,
48
+ "learning_rate": 1.534326241134752e-05,
49
+ "loss": 0.0941,
50
+ "step": 3283
51
+ },
52
+ {
53
+ "epoch": 0.8,
54
+ "learning_rate": 1.4678014184397164e-05,
55
+ "loss": 0.0826,
56
+ "step": 3752
57
+ },
58
+ {
59
+ "epoch": 0.9,
60
+ "learning_rate": 1.401276595744681e-05,
61
+ "loss": 0.0806,
62
+ "step": 4221
63
+ },
64
+ {
65
+ "epoch": 1.0,
66
+ "learning_rate": 1.3347517730496456e-05,
67
+ "loss": 0.082,
68
+ "step": 4690
69
+ },
70
+ {
71
+ "epoch": 1.0,
72
+ "eval_accuracy": 0.9746784684424369,
73
+ "eval_f1": 0.8338050592605697,
74
+ "eval_loss": 0.0911484956741333,
75
+ "eval_precision": 0.8302069572875386,
76
+ "eval_recall": 0.8374344852092032,
77
+ "eval_runtime": 37.0605,
78
+ "eval_samples_per_second": 255.771,
79
+ "eval_steps_per_second": 16.001,
80
+ "step": 4700
81
+ },
82
+ {
83
+ "epoch": 1.1,
84
+ "learning_rate": 1.26822695035461e-05,
85
+ "loss": 0.0686,
86
+ "step": 5159
87
+ },
88
+ {
89
+ "epoch": 1.2,
90
+ "learning_rate": 1.2017021276595745e-05,
91
+ "loss": 0.0645,
92
+ "step": 5628
93
+ },
94
+ {
95
+ "epoch": 1.3,
96
+ "learning_rate": 1.1351773049645392e-05,
97
+ "loss": 0.0638,
98
+ "step": 6097
99
+ },
100
+ {
101
+ "epoch": 1.4,
102
+ "learning_rate": 1.0686524822695037e-05,
103
+ "loss": 0.0606,
104
+ "step": 6566
105
+ },
106
+ {
107
+ "epoch": 1.5,
108
+ "learning_rate": 1.0021276595744682e-05,
109
+ "loss": 0.0616,
110
+ "step": 7035
111
+ },
112
+ {
113
+ "epoch": 1.6,
114
+ "learning_rate": 9.356028368794327e-06,
115
+ "loss": 0.0579,
116
+ "step": 7504
117
+ },
118
+ {
119
+ "epoch": 1.7,
120
+ "learning_rate": 8.690780141843971e-06,
121
+ "loss": 0.0561,
122
+ "step": 7973
123
+ },
124
+ {
125
+ "epoch": 1.8,
126
+ "learning_rate": 8.025531914893618e-06,
127
+ "loss": 0.0565,
128
+ "step": 8442
129
+ },
130
+ {
131
+ "epoch": 1.9,
132
+ "learning_rate": 7.360283687943263e-06,
133
+ "loss": 0.0551,
134
+ "step": 8911
135
+ },
136
+ {
137
+ "epoch": 2.0,
138
+ "learning_rate": 6.695035460992908e-06,
139
+ "loss": 0.0592,
140
+ "step": 9380
141
+ },
142
+ {
143
+ "epoch": 2.0,
144
+ "eval_accuracy": 0.9760701501954842,
145
+ "eval_f1": 0.8429752066115702,
146
+ "eval_loss": 0.08603910356760025,
147
+ "eval_precision": 0.8525483783047152,
148
+ "eval_recall": 0.8336146397796926,
149
+ "eval_runtime": 36.5619,
150
+ "eval_samples_per_second": 259.259,
151
+ "eval_steps_per_second": 16.219,
152
+ "step": 9400
153
+ },
154
+ {
155
+ "epoch": 2.1,
156
+ "learning_rate": 6.029787234042554e-06,
157
+ "loss": 0.0406,
158
+ "step": 9849
159
+ },
160
+ {
161
+ "epoch": 2.2,
162
+ "learning_rate": 5.3645390070921985e-06,
163
+ "loss": 0.0387,
164
+ "step": 10318
165
+ },
166
+ {
167
+ "epoch": 2.3,
168
+ "learning_rate": 4.699290780141844e-06,
169
+ "loss": 0.0399,
170
+ "step": 10787
171
+ },
172
+ {
173
+ "epoch": 2.39,
174
+ "learning_rate": 4.03404255319149e-06,
175
+ "loss": 0.0407,
176
+ "step": 11256
177
+ },
178
+ {
179
+ "epoch": 2.49,
180
+ "learning_rate": 3.368794326241135e-06,
181
+ "loss": 0.0394,
182
+ "step": 11725
183
+ },
184
+ {
185
+ "epoch": 2.59,
186
+ "learning_rate": 2.70354609929078e-06,
187
+ "loss": 0.0369,
188
+ "step": 12194
189
+ },
190
+ {
191
+ "epoch": 2.69,
192
+ "learning_rate": 2.0382978723404254e-06,
193
+ "loss": 0.0408,
194
+ "step": 12663
195
+ },
196
+ {
197
+ "epoch": 2.79,
198
+ "learning_rate": 1.373049645390071e-06,
199
+ "loss": 0.0363,
200
+ "step": 13132
201
+ },
202
+ {
203
+ "epoch": 2.89,
204
+ "learning_rate": 7.078014184397164e-07,
205
+ "loss": 0.0392,
206
+ "step": 13601
207
+ },
208
+ {
209
+ "epoch": 2.99,
210
+ "learning_rate": 4.2553191489361707e-08,
211
+ "loss": 0.0392,
212
+ "step": 14070
213
+ },
214
+ {
215
+ "epoch": 3.0,
216
+ "eval_accuracy": 0.9780515276066022,
217
+ "eval_f1": 0.8619402985074628,
218
+ "eval_loss": 0.08666320890188217,
219
+ "eval_precision": 0.8620168813860506,
220
+ "eval_recall": 0.8618637292351425,
221
+ "eval_runtime": 36.7418,
222
+ "eval_samples_per_second": 257.989,
223
+ "eval_steps_per_second": 16.14,
224
+ "step": 14100
225
+ }
226
+ ],
227
+ "max_steps": 14100,
228
+ "num_train_epochs": 3,
229
+ "total_flos": 580572089788770.0,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15c7912e3146ffbf0b4944c488054f98500ed7228181655063dab2a1d36f7001
3
+ size 3311