File size: 1,967 Bytes
052ea5d 84dd6f5 30acde3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
tags:
- token-classification
datasets:
- djagatiya/ner-ontonotes-v5-eng-v4
widget:
- text: "On September 1st George won 1 dollar while watching Game of Thrones."
---
# (NER) deberta-base : conll2012_ontonotesv5-english-v4
This `deberta-base` NER model was finetuned on `conll2012_ontonotesv5` version `english-v4` dataset. <br>
Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information.
## Dataset
- conll2012_ontonotesv5
- Language : English
- Version : v4
| Dataset | Examples |
| --- | --- |
| Training | 75187 |
| Testing | 9479 |
## Evaluation
- Precision: 89.53
- Recall: 91.00
- F1-Score: 90.26
```
precision recall f1-score support
CARDINAL 0.86 0.87 0.86 935
DATE 0.85 0.89 0.87 1602
EVENT 0.65 0.78 0.71 63
FAC 0.74 0.80 0.77 135
GPE 0.97 0.96 0.96 2240
LANGUAGE 0.83 0.68 0.75 22
LAW 0.71 0.68 0.69 40
LOC 0.74 0.77 0.76 179
MONEY 0.88 0.90 0.89 314
NORP 0.94 0.97 0.95 841
ORDINAL 0.79 0.87 0.83 195
ORG 0.92 0.92 0.92 1795
PERCENT 0.92 0.92 0.92 349
PERSON 0.95 0.95 0.95 1988
PRODUCT 0.65 0.76 0.70 76
QUANTITY 0.77 0.82 0.80 105
TIME 0.62 0.65 0.63 212
WORK_OF_ART 0.64 0.69 0.66 166
micro avg 0.90 0.91 0.90 11257
macro avg 0.80 0.83 0.81 11257
weighted avg 0.90 0.91 0.90 11257
```
## Inference Script
> https://github.com/djagatiya/NER-System/blob/main/infer_pipeline.ipynb
|