File size: 1,967 Bytes
052ea5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84dd6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30acde3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---

tags:
- token-classification
datasets:
- djagatiya/ner-ontonotes-v5-eng-v4
widget:
- text: "On September 1st George won 1 dollar while watching Game of Thrones."

---

# (NER) deberta-base : conll2012_ontonotesv5-english-v4

This `deberta-base` NER model was finetuned on `conll2012_ontonotesv5` version `english-v4` dataset. <br>
Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information.

## Dataset
- conll2012_ontonotesv5
    - Language : English
    - Version : v4

  | Dataset | Examples |
  | --- | --- | 
  | Training | 75187 | 
  | Testing | 9479 |

## Evaluation

- Precision: 89.53
- Recall: 91.00
- F1-Score: 90.26

```
                precision    recall  f1-score   support

    CARDINAL       0.86      0.87      0.86       935
        DATE       0.85      0.89      0.87      1602
       EVENT       0.65      0.78      0.71        63
         FAC       0.74      0.80      0.77       135
         GPE       0.97      0.96      0.96      2240
    LANGUAGE       0.83      0.68      0.75        22
         LAW       0.71      0.68      0.69        40
         LOC       0.74      0.77      0.76       179
       MONEY       0.88      0.90      0.89       314
        NORP       0.94      0.97      0.95       841
     ORDINAL       0.79      0.87      0.83       195
         ORG       0.92      0.92      0.92      1795
     PERCENT       0.92      0.92      0.92       349
      PERSON       0.95      0.95      0.95      1988
     PRODUCT       0.65      0.76      0.70        76
    QUANTITY       0.77      0.82      0.80       105
        TIME       0.62      0.65      0.63       212
 WORK_OF_ART       0.64      0.69      0.66       166

   micro avg       0.90      0.91      0.90     11257
   macro avg       0.80      0.83      0.81     11257
weighted avg       0.90      0.91      0.90     11257
```

## Inference Script

> https://github.com/djagatiya/NER-System/blob/main/infer_pipeline.ipynb