djagatiya commited on
Commit
4436f0d
1 Parent(s): a260232

Initial commit.

Browse files
README.md ADDED
File without changes
config.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForTokenClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "O",
13
+ "1": "B-PERSON",
14
+ "2": "I-PERSON",
15
+ "3": "B-NORP",
16
+ "4": "I-NORP",
17
+ "5": "B-FAC",
18
+ "6": "I-FAC",
19
+ "7": "B-ORG",
20
+ "8": "I-ORG",
21
+ "9": "B-GPE",
22
+ "10": "I-GPE",
23
+ "11": "B-LOC",
24
+ "12": "I-LOC",
25
+ "13": "B-PRODUCT",
26
+ "14": "I-PRODUCT",
27
+ "15": "B-DATE",
28
+ "16": "I-DATE",
29
+ "17": "B-TIME",
30
+ "18": "I-TIME",
31
+ "19": "B-PERCENT",
32
+ "20": "I-PERCENT",
33
+ "21": "B-MONEY",
34
+ "22": "I-MONEY",
35
+ "23": "B-QUANTITY",
36
+ "24": "I-QUANTITY",
37
+ "25": "B-ORDINAL",
38
+ "26": "I-ORDINAL",
39
+ "27": "B-CARDINAL",
40
+ "28": "I-CARDINAL",
41
+ "29": "B-EVENT",
42
+ "30": "I-EVENT",
43
+ "31": "B-WORK_OF_ART",
44
+ "32": "I-WORK_OF_ART",
45
+ "33": "B-LAW",
46
+ "34": "I-LAW",
47
+ "35": "B-LANGUAGE",
48
+ "36": "I-LANGUAGE"
49
+ },
50
+ "initializer_range": 0.02,
51
+ "label2id": {
52
+ "B-CARDINAL": 27,
53
+ "B-DATE": 15,
54
+ "B-EVENT": 29,
55
+ "B-FAC": 5,
56
+ "B-GPE": 9,
57
+ "B-LANGUAGE": 35,
58
+ "B-LAW": 33,
59
+ "B-LOC": 11,
60
+ "B-MONEY": 21,
61
+ "B-NORP": 3,
62
+ "B-ORDINAL": 25,
63
+ "B-ORG": 7,
64
+ "B-PERCENT": 19,
65
+ "B-PERSON": 1,
66
+ "B-PRODUCT": 13,
67
+ "B-QUANTITY": 23,
68
+ "B-TIME": 17,
69
+ "B-WORK_OF_ART": 31,
70
+ "I-CARDINAL": 28,
71
+ "I-DATE": 16,
72
+ "I-EVENT": 30,
73
+ "I-FAC": 6,
74
+ "I-GPE": 10,
75
+ "I-LANGUAGE": 36,
76
+ "I-LAW": 34,
77
+ "I-LOC": 12,
78
+ "I-MONEY": 22,
79
+ "I-NORP": 4,
80
+ "I-ORDINAL": 26,
81
+ "I-ORG": 8,
82
+ "I-PERCENT": 20,
83
+ "I-PERSON": 2,
84
+ "I-PRODUCT": 14,
85
+ "I-QUANTITY": 24,
86
+ "I-TIME": 18,
87
+ "I-WORK_OF_ART": 32,
88
+ "O": 0
89
+ },
90
+ "max_position_embeddings": 512,
91
+ "model_type": "distilbert",
92
+ "n_heads": 12,
93
+ "n_layers": 6,
94
+ "pad_token_id": 0,
95
+ "qa_dropout": 0.1,
96
+ "seq_classif_dropout": 0.2,
97
+ "sinusoidal_pos_embds": false,
98
+ "tie_weights_": true,
99
+ "torch_dtype": "float32",
100
+ "transformers_version": "4.20.0",
101
+ "vocab_size": 30522
102
+ }
eval.log ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-07-03 13:02:00,483 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
2
+ 2022-07-03 13:02:08,987 - __main__ - INFO - Dataset({
3
+ features: ['id', 'words', 'ner_tags'],
4
+ num_rows: 75187
5
+ })
6
+ 2022-07-03 13:02:09,752 - __main__ - INFO - Dataset({
7
+ features: ['id', 'words', 'ner_tags'],
8
+ num_rows: 9479
9
+ })
10
+ 2022-07-03 13:02:09,755 - transformers.tokenization_utils_base - INFO - Didn't find file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/added_tokens.json. We won't load it.
11
+ 2022-07-03 13:02:09,756 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/vocab.txt
12
+ 2022-07-03 13:02:09,756 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/tokenizer.json
13
+ 2022-07-03 13:02:09,756 - transformers.tokenization_utils_base - INFO - loading file None
14
+ 2022-07-03 13:02:09,757 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/special_tokens_map.json
15
+ 2022-07-03 13:02:09,757 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/tokenizer_config.json
16
+ 2022-07-03 13:02:09,775 - __main__ - INFO - {'input_ids': [[101, 2054, 2785, 1997, 3638, 1029, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 2057, 26438, 2135, 13260, 2017, 2000, 3422, 1037, 2569, 3179, 1997, 2408, 2859, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1059, 2860, 2462, 16209, 2006, 1996, 2307, 3011, 1997, 2859, 1024, 10721, 5758, 1997, 13843, 18003, 3137, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 3061, 4206, 2006, 13843, 18003, 3137, 2003, 1996, 6104, 2000, 1996, 3634, 10435, 5805, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 2009, 2003, 3605, 1997, 1037, 3078, 26261, 2571, 1010, 3905, 26261, 4244, 1010, 1037, 4121, 2461, 6743, 1998, 14400, 3578, 1010, 1998, 1996, 2307, 2813, 1010, 2426, 2060, 2477, 1012, 102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
17
+ 2022-07-03 13:02:09,776 - __main__ - INFO - ['[CLS]', 'what', 'kind', 'of', 'memory', '?', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
18
+ 2022-07-03 13:02:09,776 - __main__ - INFO - ['[CLS]', 'we', 'respectful', '##ly', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'across', 'china', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
19
+ 2022-07-03 13:02:09,777 - __main__ - INFO - ['[CLS]', 'w', '##w', 'ii', 'landmarks', 'on', 'the', 'great', 'earth', 'of', 'china', ':', 'eternal', 'memories', 'of', 'tai', '##hang', 'mountain', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
20
+ 2022-07-03 13:02:09,777 - __main__ - INFO - ['[CLS]', 'standing', 'tall', 'on', 'tai', '##hang', 'mountain', 'is', 'the', 'monument', 'to', 'the', 'hundred', 'regiments', 'offensive', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
21
+ 2022-07-03 13:02:09,778 - __main__ - INFO - ['[CLS]', 'it', 'is', 'composed', 'of', 'a', 'primary', 'ste', '##le', ',', 'secondary', 'ste', '##les', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'great', 'wall', ',', 'among', 'other', 'things', '.', '[SEP]']
22
+ 2022-07-03 13:02:09,778 - __main__ - INFO - -------------
23
+ 2022-07-03 13:02:09,778 - __main__ - INFO - ['[CLS]', 'we', 'respectful', '##ly', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'across', 'china', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
24
+ 2022-07-03 13:02:09,779 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
25
+ 2022-07-03 13:02:09,785 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f675dfb45e0> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
26
+ 2022-07-03 13:02:14,916 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[101, 2054, 2785, 1997, 3638, 1029, 102], [101, 2057, 26438, 2135, 13260, 2017, 2000, 3422, 1037, 2569, 3179, 1997, 2408, 2859, 1012, 102], [101, 1059, 2860, 2462, 16209, 2006, 1996, 2307, 3011, 1997, 2859, 1024, 10721, 5758, 1997, 13843, 18003, 3137, 102], [101, 3061, 4206, 2006, 13843, 18003, 3137, 2003, 1996, 6104, 2000, 1996, 3634, 10435, 5805, 1012, 102], [101, 2009, 2003, 3605, 1997, 1037, 3078, 26261, 2571, 1010, 3905, 26261, 4244, 1010, 1037, 4121, 2461, 6743, 1998, 14400, 3578, 1010, 1998, 1996, 2307, 2813, 1010, 2426, 2060, 2477, 1012, 102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100], [-100, 31, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0, -100]]}
27
+ 2022-07-03 13:02:16,871 - transformers.configuration_utils - INFO - loading configuration file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/config.json
28
+ 2022-07-03 13:02:16,873 - transformers.configuration_utils - INFO - Model config DistilBertConfig {
29
+ "_name_or_path": "models/distilbert-base-uncased_1656660721.137864/checkpoint-14100",
30
+ "activation": "gelu",
31
+ "architectures": [
32
+ "DistilBertForTokenClassification"
33
+ ],
34
+ "attention_dropout": 0.1,
35
+ "dim": 768,
36
+ "dropout": 0.1,
37
+ "hidden_dim": 3072,
38
+ "id2label": {
39
+ "0": "O",
40
+ "1": "B-PERSON",
41
+ "2": "I-PERSON",
42
+ "3": "B-NORP",
43
+ "4": "I-NORP",
44
+ "5": "B-FAC",
45
+ "6": "I-FAC",
46
+ "7": "B-ORG",
47
+ "8": "I-ORG",
48
+ "9": "B-GPE",
49
+ "10": "I-GPE",
50
+ "11": "B-LOC",
51
+ "12": "I-LOC",
52
+ "13": "B-PRODUCT",
53
+ "14": "I-PRODUCT",
54
+ "15": "B-DATE",
55
+ "16": "I-DATE",
56
+ "17": "B-TIME",
57
+ "18": "I-TIME",
58
+ "19": "B-PERCENT",
59
+ "20": "I-PERCENT",
60
+ "21": "B-MONEY",
61
+ "22": "I-MONEY",
62
+ "23": "B-QUANTITY",
63
+ "24": "I-QUANTITY",
64
+ "25": "B-ORDINAL",
65
+ "26": "I-ORDINAL",
66
+ "27": "B-CARDINAL",
67
+ "28": "I-CARDINAL",
68
+ "29": "B-EVENT",
69
+ "30": "I-EVENT",
70
+ "31": "B-WORK_OF_ART",
71
+ "32": "I-WORK_OF_ART",
72
+ "33": "B-LAW",
73
+ "34": "I-LAW",
74
+ "35": "B-LANGUAGE",
75
+ "36": "I-LANGUAGE"
76
+ },
77
+ "initializer_range": 0.02,
78
+ "label2id": {
79
+ "B-CARDINAL": 27,
80
+ "B-DATE": 15,
81
+ "B-EVENT": 29,
82
+ "B-FAC": 5,
83
+ "B-GPE": 9,
84
+ "B-LANGUAGE": 35,
85
+ "B-LAW": 33,
86
+ "B-LOC": 11,
87
+ "B-MONEY": 21,
88
+ "B-NORP": 3,
89
+ "B-ORDINAL": 25,
90
+ "B-ORG": 7,
91
+ "B-PERCENT": 19,
92
+ "B-PERSON": 1,
93
+ "B-PRODUCT": 13,
94
+ "B-QUANTITY": 23,
95
+ "B-TIME": 17,
96
+ "B-WORK_OF_ART": 31,
97
+ "I-CARDINAL": 28,
98
+ "I-DATE": 16,
99
+ "I-EVENT": 30,
100
+ "I-FAC": 6,
101
+ "I-GPE": 10,
102
+ "I-LANGUAGE": 36,
103
+ "I-LAW": 34,
104
+ "I-LOC": 12,
105
+ "I-MONEY": 22,
106
+ "I-NORP": 4,
107
+ "I-ORDINAL": 26,
108
+ "I-ORG": 8,
109
+ "I-PERCENT": 20,
110
+ "I-PERSON": 2,
111
+ "I-PRODUCT": 14,
112
+ "I-QUANTITY": 24,
113
+ "I-TIME": 18,
114
+ "I-WORK_OF_ART": 32,
115
+ "O": 0
116
+ },
117
+ "max_position_embeddings": 512,
118
+ "model_type": "distilbert",
119
+ "n_heads": 12,
120
+ "n_layers": 6,
121
+ "pad_token_id": 0,
122
+ "qa_dropout": 0.1,
123
+ "seq_classif_dropout": 0.2,
124
+ "sinusoidal_pos_embds": false,
125
+ "tie_weights_": true,
126
+ "torch_dtype": "float32",
127
+ "transformers_version": "4.20.0",
128
+ "vocab_size": 30522
129
+ }
130
+
131
+ 2022-07-03 13:02:17,083 - transformers.modeling_utils - INFO - loading weights file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/pytorch_model.bin
132
+ 2022-07-03 13:02:18,221 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing DistilBertForTokenClassification.
133
+
134
+ 2022-07-03 13:02:18,223 - transformers.modeling_utils - INFO - All the weights of DistilBertForTokenClassification were initialized from the model checkpoint at models/distilbert-base-uncased_1656660721.137864/checkpoint-14100.
135
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertForTokenClassification for predictions without further training.
136
+ 2022-07-03 13:02:18,226 - __main__ - INFO - DistilBertForTokenClassification(
137
+ (distilbert): DistilBertModel(
138
+ (embeddings): Embeddings(
139
+ (word_embeddings): Embedding(30522, 768, padding_idx=0)
140
+ (position_embeddings): Embedding(512, 768)
141
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
142
+ (dropout): Dropout(p=0.1, inplace=False)
143
+ )
144
+ (transformer): Transformer(
145
+ (layer): ModuleList(
146
+ (0): TransformerBlock(
147
+ (attention): MultiHeadSelfAttention(
148
+ (dropout): Dropout(p=0.1, inplace=False)
149
+ (q_lin): Linear(in_features=768, out_features=768, bias=True)
150
+ (k_lin): Linear(in_features=768, out_features=768, bias=True)
151
+ (v_lin): Linear(in_features=768, out_features=768, bias=True)
152
+ (out_lin): Linear(in_features=768, out_features=768, bias=True)
153
+ )
154
+ (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (ffn): FFN(
156
+ (dropout): Dropout(p=0.1, inplace=False)
157
+ (lin1): Linear(in_features=768, out_features=3072, bias=True)
158
+ (lin2): Linear(in_features=3072, out_features=768, bias=True)
159
+ (activation): GELUActivation()
160
+ )
161
+ (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
162
+ )
163
+ (1): TransformerBlock(
164
+ (attention): MultiHeadSelfAttention(
165
+ (dropout): Dropout(p=0.1, inplace=False)
166
+ (q_lin): Linear(in_features=768, out_features=768, bias=True)
167
+ (k_lin): Linear(in_features=768, out_features=768, bias=True)
168
+ (v_lin): Linear(in_features=768, out_features=768, bias=True)
169
+ (out_lin): Linear(in_features=768, out_features=768, bias=True)
170
+ )
171
+ (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
172
+ (ffn): FFN(
173
+ (dropout): Dropout(p=0.1, inplace=False)
174
+ (lin1): Linear(in_features=768, out_features=3072, bias=True)
175
+ (lin2): Linear(in_features=3072, out_features=768, bias=True)
176
+ (activation): GELUActivation()
177
+ )
178
+ (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ )
180
+ (2): TransformerBlock(
181
+ (attention): MultiHeadSelfAttention(
182
+ (dropout): Dropout(p=0.1, inplace=False)
183
+ (q_lin): Linear(in_features=768, out_features=768, bias=True)
184
+ (k_lin): Linear(in_features=768, out_features=768, bias=True)
185
+ (v_lin): Linear(in_features=768, out_features=768, bias=True)
186
+ (out_lin): Linear(in_features=768, out_features=768, bias=True)
187
+ )
188
+ (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
189
+ (ffn): FFN(
190
+ (dropout): Dropout(p=0.1, inplace=False)
191
+ (lin1): Linear(in_features=768, out_features=3072, bias=True)
192
+ (lin2): Linear(in_features=3072, out_features=768, bias=True)
193
+ (activation): GELUActivation()
194
+ )
195
+ (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
196
+ )
197
+ (3): TransformerBlock(
198
+ (attention): MultiHeadSelfAttention(
199
+ (dropout): Dropout(p=0.1, inplace=False)
200
+ (q_lin): Linear(in_features=768, out_features=768, bias=True)
201
+ (k_lin): Linear(in_features=768, out_features=768, bias=True)
202
+ (v_lin): Linear(in_features=768, out_features=768, bias=True)
203
+ (out_lin): Linear(in_features=768, out_features=768, bias=True)
204
+ )
205
+ (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
206
+ (ffn): FFN(
207
+ (dropout): Dropout(p=0.1, inplace=False)
208
+ (lin1): Linear(in_features=768, out_features=3072, bias=True)
209
+ (lin2): Linear(in_features=3072, out_features=768, bias=True)
210
+ (activation): GELUActivation()
211
+ )
212
+ (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
213
+ )
214
+ (4): TransformerBlock(
215
+ (attention): MultiHeadSelfAttention(
216
+ (dropout): Dropout(p=0.1, inplace=False)
217
+ (q_lin): Linear(in_features=768, out_features=768, bias=True)
218
+ (k_lin): Linear(in_features=768, out_features=768, bias=True)
219
+ (v_lin): Linear(in_features=768, out_features=768, bias=True)
220
+ (out_lin): Linear(in_features=768, out_features=768, bias=True)
221
+ )
222
+ (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
223
+ (ffn): FFN(
224
+ (dropout): Dropout(p=0.1, inplace=False)
225
+ (lin1): Linear(in_features=768, out_features=3072, bias=True)
226
+ (lin2): Linear(in_features=3072, out_features=768, bias=True)
227
+ (activation): GELUActivation()
228
+ )
229
+ (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
230
+ )
231
+ (5): TransformerBlock(
232
+ (attention): MultiHeadSelfAttention(
233
+ (dropout): Dropout(p=0.1, inplace=False)
234
+ (q_lin): Linear(in_features=768, out_features=768, bias=True)
235
+ (k_lin): Linear(in_features=768, out_features=768, bias=True)
236
+ (v_lin): Linear(in_features=768, out_features=768, bias=True)
237
+ (out_lin): Linear(in_features=768, out_features=768, bias=True)
238
+ )
239
+ (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
240
+ (ffn): FFN(
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ (lin1): Linear(in_features=768, out_features=3072, bias=True)
243
+ (lin2): Linear(in_features=3072, out_features=768, bias=True)
244
+ (activation): GELUActivation()
245
+ )
246
+ (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
247
+ )
248
+ )
249
+ )
250
+ )
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ (classifier): Linear(in_features=768, out_features=37, bias=True)
253
+ )
254
+ 2022-07-03 13:02:18,228 - __main__ - INFO - CONFIGS:{
255
+ "output_dir": "./models/distilbert-base-uncased_1656833520.4812543",
256
+ "per_device_train_batch_size": 16,
257
+ "per_device_eval_batch_size": 16,
258
+ "save_total_limit": 2,
259
+ "num_train_epochs": 3,
260
+ "seed": 1,
261
+ "load_best_model_at_end": true,
262
+ "evaluation_strategy": "epoch",
263
+ "save_strategy": "epoch",
264
+ "learning_rate": 2e-05,
265
+ "weight_decay": 0.01,
266
+ "logging_steps": 469.0
267
+ }
268
+ 2022-07-03 13:02:18,228 - transformers.training_args - INFO - PyTorch: setting up devices
269
+ 2022-07-03 13:02:18,318 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
270
+ 2022-07-03 13:02:23,736 - __main__ - INFO - [[ MODEL EVALUATION ]]
271
+ 2022-07-03 13:02:23,736 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `DistilBertForTokenClassification.forward` and have been ignored: id, ner_tags, words. If id, ner_tags, words are not expected by `DistilBertForTokenClassification.forward`, you can safely ignore this message.
272
+ 2022-07-03 13:02:23,752 - transformers.trainer - INFO - ***** Running Evaluation *****
273
+ 2022-07-03 13:02:23,752 - transformers.trainer - INFO - Num examples = 9479
274
+ 2022-07-03 13:02:23,752 - transformers.trainer - INFO - Batch size = 16
275
+ 2022-07-03 13:03:05,412 - __main__ - INFO - {'eval_loss': 0.08268037438392639, 'eval_precision': 0.8460803059273423, 'eval_recall': 0.8647952385182553, 'eval_f1': 0.8553354127311866, 'eval_accuracy': 0.9779158976052459, 'eval_runtime': 41.6535, 'eval_samples_per_second': 227.568, 'eval_steps_per_second': 14.236, 'step': 0}
276
+ 2022-07-03 13:03:05,413 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `DistilBertForTokenClassification.forward` and have been ignored: id, ner_tags, words. If id, ner_tags, words are not expected by `DistilBertForTokenClassification.forward`, you can safely ignore this message.
277
+ 2022-07-03 13:03:05,415 - transformers.trainer - INFO - ***** Running Prediction *****
278
+ 2022-07-03 13:03:05,415 - transformers.trainer - INFO - Num examples = 9479
279
+ 2022-07-03 13:03:05,415 - transformers.trainer - INFO - Batch size = 16
280
+ 2022-07-03 13:03:49,560 - __main__ - INFO - precision recall f1-score support
281
+
282
+ CARDINAL 0.84 0.86 0.85 935
283
+ DATE 0.83 0.88 0.85 1602
284
+ EVENT 0.57 0.57 0.57 63
285
+ FAC 0.55 0.62 0.58 135
286
+ GPE 0.95 0.92 0.94 2240
287
+ LANGUAGE 0.82 0.64 0.72 22
288
+ LAW 0.50 0.50 0.50 40
289
+ LOC 0.55 0.72 0.62 179
290
+ MONEY 0.87 0.89 0.88 314
291
+ NORP 0.85 0.89 0.87 841
292
+ ORDINAL 0.81 0.88 0.84 195
293
+ ORG 0.81 0.83 0.82 1795
294
+ PERCENT 0.87 0.89 0.88 349
295
+ PERSON 0.93 0.93 0.93 1988
296
+ PRODUCT 0.55 0.55 0.55 76
297
+ QUANTITY 0.71 0.80 0.75 105
298
+ TIME 0.59 0.66 0.62 212
299
+ WORK_OF_ART 0.42 0.44 0.43 166
300
+
301
+ micro avg 0.85 0.86 0.86 11257
302
+ macro avg 0.72 0.75 0.73 11257
303
+ weighted avg 0.85 0.86 0.86 11257
304
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90abb0422b3cb1d31eb8ddd1d30a6d0b45ce52374ad4047c958811f2f9c1afe9
3
+ size 265598965
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ce7ebac1a927110a5b294fcaed6d87838e6471ad2ea28d6cdd9fdca86fa6b71
3
+ size 14503
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0271a42487a5a379bf223d761cfc585dcba1a6069b012d2a634c31973187a24e
3
+ size 623
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": true,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "distilbert-base-uncased",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "DistilBertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.08035404235124588,
3
+ "best_model_checkpoint": "./models/distilbert-base-uncased_1656660721.137864/checkpoint-9400",
4
+ "epoch": 3.0,
5
+ "global_step": 14100,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.1,
12
+ "learning_rate": 1.9334751773049647e-05,
13
+ "loss": 0.3653,
14
+ "step": 469
15
+ },
16
+ {
17
+ "epoch": 0.2,
18
+ "learning_rate": 1.866950354609929e-05,
19
+ "loss": 0.144,
20
+ "step": 938
21
+ },
22
+ {
23
+ "epoch": 0.3,
24
+ "learning_rate": 1.8004255319148936e-05,
25
+ "loss": 0.1162,
26
+ "step": 1407
27
+ },
28
+ {
29
+ "epoch": 0.4,
30
+ "learning_rate": 1.7339007092198585e-05,
31
+ "loss": 0.1076,
32
+ "step": 1876
33
+ },
34
+ {
35
+ "epoch": 0.5,
36
+ "learning_rate": 1.667375886524823e-05,
37
+ "loss": 0.0947,
38
+ "step": 2345
39
+ },
40
+ {
41
+ "epoch": 0.6,
42
+ "learning_rate": 1.6008510638297874e-05,
43
+ "loss": 0.0864,
44
+ "step": 2814
45
+ },
46
+ {
47
+ "epoch": 0.7,
48
+ "learning_rate": 1.534326241134752e-05,
49
+ "loss": 0.0913,
50
+ "step": 3283
51
+ },
52
+ {
53
+ "epoch": 0.8,
54
+ "learning_rate": 1.4678014184397164e-05,
55
+ "loss": 0.076,
56
+ "step": 3752
57
+ },
58
+ {
59
+ "epoch": 0.9,
60
+ "learning_rate": 1.401276595744681e-05,
61
+ "loss": 0.0785,
62
+ "step": 4221
63
+ },
64
+ {
65
+ "epoch": 1.0,
66
+ "learning_rate": 1.3347517730496456e-05,
67
+ "loss": 0.0749,
68
+ "step": 4690
69
+ },
70
+ {
71
+ "epoch": 1.0,
72
+ "eval_accuracy": 0.976376791937681,
73
+ "eval_f1": 0.8418500066134651,
74
+ "eval_loss": 0.08329251408576965,
75
+ "eval_precision": 0.8356967787114846,
76
+ "eval_recall": 0.8480945189659768,
77
+ "eval_runtime": 18.0373,
78
+ "eval_samples_per_second": 525.521,
79
+ "eval_steps_per_second": 32.876,
80
+ "step": 4700
81
+ },
82
+ {
83
+ "epoch": 1.1,
84
+ "learning_rate": 1.26822695035461e-05,
85
+ "loss": 0.061,
86
+ "step": 5159
87
+ },
88
+ {
89
+ "epoch": 1.2,
90
+ "learning_rate": 1.2017021276595745e-05,
91
+ "loss": 0.0579,
92
+ "step": 5628
93
+ },
94
+ {
95
+ "epoch": 1.3,
96
+ "learning_rate": 1.1351773049645392e-05,
97
+ "loss": 0.0564,
98
+ "step": 6097
99
+ },
100
+ {
101
+ "epoch": 1.4,
102
+ "learning_rate": 1.0686524822695037e-05,
103
+ "loss": 0.0539,
104
+ "step": 6566
105
+ },
106
+ {
107
+ "epoch": 1.5,
108
+ "learning_rate": 1.0021276595744682e-05,
109
+ "loss": 0.0566,
110
+ "step": 7035
111
+ },
112
+ {
113
+ "epoch": 1.6,
114
+ "learning_rate": 9.356028368794327e-06,
115
+ "loss": 0.0516,
116
+ "step": 7504
117
+ },
118
+ {
119
+ "epoch": 1.7,
120
+ "learning_rate": 8.690780141843971e-06,
121
+ "loss": 0.0506,
122
+ "step": 7973
123
+ },
124
+ {
125
+ "epoch": 1.8,
126
+ "learning_rate": 8.025531914893618e-06,
127
+ "loss": 0.0518,
128
+ "step": 8442
129
+ },
130
+ {
131
+ "epoch": 1.9,
132
+ "learning_rate": 7.360283687943263e-06,
133
+ "loss": 0.0485,
134
+ "step": 8911
135
+ },
136
+ {
137
+ "epoch": 2.0,
138
+ "learning_rate": 6.695035460992908e-06,
139
+ "loss": 0.0549,
140
+ "step": 9380
141
+ },
142
+ {
143
+ "epoch": 2.0,
144
+ "eval_accuracy": 0.9773085110774329,
145
+ "eval_f1": 0.8474291524824263,
146
+ "eval_loss": 0.08035404235124588,
147
+ "eval_precision": 0.8435134659390953,
148
+ "eval_recall": 0.8513813627076485,
149
+ "eval_runtime": 16.8781,
150
+ "eval_samples_per_second": 561.614,
151
+ "eval_steps_per_second": 35.134,
152
+ "step": 9400
153
+ },
154
+ {
155
+ "epoch": 2.1,
156
+ "learning_rate": 6.029787234042554e-06,
157
+ "loss": 0.0359,
158
+ "step": 9849
159
+ },
160
+ {
161
+ "epoch": 2.2,
162
+ "learning_rate": 5.3645390070921985e-06,
163
+ "loss": 0.0357,
164
+ "step": 10318
165
+ },
166
+ {
167
+ "epoch": 2.3,
168
+ "learning_rate": 4.699290780141844e-06,
169
+ "loss": 0.0365,
170
+ "step": 10787
171
+ },
172
+ {
173
+ "epoch": 2.39,
174
+ "learning_rate": 4.03404255319149e-06,
175
+ "loss": 0.0373,
176
+ "step": 11256
177
+ },
178
+ {
179
+ "epoch": 2.49,
180
+ "learning_rate": 3.368794326241135e-06,
181
+ "loss": 0.0356,
182
+ "step": 11725
183
+ },
184
+ {
185
+ "epoch": 2.59,
186
+ "learning_rate": 2.70354609929078e-06,
187
+ "loss": 0.0344,
188
+ "step": 12194
189
+ },
190
+ {
191
+ "epoch": 2.69,
192
+ "learning_rate": 2.0382978723404254e-06,
193
+ "loss": 0.0394,
194
+ "step": 12663
195
+ },
196
+ {
197
+ "epoch": 2.79,
198
+ "learning_rate": 1.373049645390071e-06,
199
+ "loss": 0.035,
200
+ "step": 13132
201
+ },
202
+ {
203
+ "epoch": 2.89,
204
+ "learning_rate": 7.078014184397164e-07,
205
+ "loss": 0.04,
206
+ "step": 13601
207
+ },
208
+ {
209
+ "epoch": 2.99,
210
+ "learning_rate": 4.2553191489361707e-08,
211
+ "loss": 0.0372,
212
+ "step": 14070
213
+ },
214
+ {
215
+ "epoch": 3.0,
216
+ "eval_accuracy": 0.9779158976052459,
217
+ "eval_f1": 0.8553354127311866,
218
+ "eval_loss": 0.08268037438392639,
219
+ "eval_precision": 0.8460803059273423,
220
+ "eval_recall": 0.8647952385182553,
221
+ "eval_runtime": 17.8553,
222
+ "eval_samples_per_second": 530.88,
223
+ "eval_steps_per_second": 33.211,
224
+ "step": 14100
225
+ }
226
+ ],
227
+ "max_steps": 14100,
228
+ "num_train_epochs": 3,
229
+ "total_flos": 3077290776098406.0,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:694d10c457070b66b25dbe55956043811ff557cad90e9e07618293e9a364e694
3
+ size 3375
vocab.txt ADDED
The diff for this file is too large to render. See raw diff