Initial commit.
Browse files- README.md +0 -0
- config.json +102 -0
- eval.log +304 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- trainer_state.json +232 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForTokenClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "O",
|
13 |
+
"1": "B-PERSON",
|
14 |
+
"2": "I-PERSON",
|
15 |
+
"3": "B-NORP",
|
16 |
+
"4": "I-NORP",
|
17 |
+
"5": "B-FAC",
|
18 |
+
"6": "I-FAC",
|
19 |
+
"7": "B-ORG",
|
20 |
+
"8": "I-ORG",
|
21 |
+
"9": "B-GPE",
|
22 |
+
"10": "I-GPE",
|
23 |
+
"11": "B-LOC",
|
24 |
+
"12": "I-LOC",
|
25 |
+
"13": "B-PRODUCT",
|
26 |
+
"14": "I-PRODUCT",
|
27 |
+
"15": "B-DATE",
|
28 |
+
"16": "I-DATE",
|
29 |
+
"17": "B-TIME",
|
30 |
+
"18": "I-TIME",
|
31 |
+
"19": "B-PERCENT",
|
32 |
+
"20": "I-PERCENT",
|
33 |
+
"21": "B-MONEY",
|
34 |
+
"22": "I-MONEY",
|
35 |
+
"23": "B-QUANTITY",
|
36 |
+
"24": "I-QUANTITY",
|
37 |
+
"25": "B-ORDINAL",
|
38 |
+
"26": "I-ORDINAL",
|
39 |
+
"27": "B-CARDINAL",
|
40 |
+
"28": "I-CARDINAL",
|
41 |
+
"29": "B-EVENT",
|
42 |
+
"30": "I-EVENT",
|
43 |
+
"31": "B-WORK_OF_ART",
|
44 |
+
"32": "I-WORK_OF_ART",
|
45 |
+
"33": "B-LAW",
|
46 |
+
"34": "I-LAW",
|
47 |
+
"35": "B-LANGUAGE",
|
48 |
+
"36": "I-LANGUAGE"
|
49 |
+
},
|
50 |
+
"initializer_range": 0.02,
|
51 |
+
"label2id": {
|
52 |
+
"B-CARDINAL": 27,
|
53 |
+
"B-DATE": 15,
|
54 |
+
"B-EVENT": 29,
|
55 |
+
"B-FAC": 5,
|
56 |
+
"B-GPE": 9,
|
57 |
+
"B-LANGUAGE": 35,
|
58 |
+
"B-LAW": 33,
|
59 |
+
"B-LOC": 11,
|
60 |
+
"B-MONEY": 21,
|
61 |
+
"B-NORP": 3,
|
62 |
+
"B-ORDINAL": 25,
|
63 |
+
"B-ORG": 7,
|
64 |
+
"B-PERCENT": 19,
|
65 |
+
"B-PERSON": 1,
|
66 |
+
"B-PRODUCT": 13,
|
67 |
+
"B-QUANTITY": 23,
|
68 |
+
"B-TIME": 17,
|
69 |
+
"B-WORK_OF_ART": 31,
|
70 |
+
"I-CARDINAL": 28,
|
71 |
+
"I-DATE": 16,
|
72 |
+
"I-EVENT": 30,
|
73 |
+
"I-FAC": 6,
|
74 |
+
"I-GPE": 10,
|
75 |
+
"I-LANGUAGE": 36,
|
76 |
+
"I-LAW": 34,
|
77 |
+
"I-LOC": 12,
|
78 |
+
"I-MONEY": 22,
|
79 |
+
"I-NORP": 4,
|
80 |
+
"I-ORDINAL": 26,
|
81 |
+
"I-ORG": 8,
|
82 |
+
"I-PERCENT": 20,
|
83 |
+
"I-PERSON": 2,
|
84 |
+
"I-PRODUCT": 14,
|
85 |
+
"I-QUANTITY": 24,
|
86 |
+
"I-TIME": 18,
|
87 |
+
"I-WORK_OF_ART": 32,
|
88 |
+
"O": 0
|
89 |
+
},
|
90 |
+
"max_position_embeddings": 512,
|
91 |
+
"model_type": "distilbert",
|
92 |
+
"n_heads": 12,
|
93 |
+
"n_layers": 6,
|
94 |
+
"pad_token_id": 0,
|
95 |
+
"qa_dropout": 0.1,
|
96 |
+
"seq_classif_dropout": 0.2,
|
97 |
+
"sinusoidal_pos_embds": false,
|
98 |
+
"tie_weights_": true,
|
99 |
+
"torch_dtype": "float32",
|
100 |
+
"transformers_version": "4.20.0",
|
101 |
+
"vocab_size": 30522
|
102 |
+
}
|
eval.log
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-07-03 13:02:00,483 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
|
2 |
+
2022-07-03 13:02:08,987 - __main__ - INFO - Dataset({
|
3 |
+
features: ['id', 'words', 'ner_tags'],
|
4 |
+
num_rows: 75187
|
5 |
+
})
|
6 |
+
2022-07-03 13:02:09,752 - __main__ - INFO - Dataset({
|
7 |
+
features: ['id', 'words', 'ner_tags'],
|
8 |
+
num_rows: 9479
|
9 |
+
})
|
10 |
+
2022-07-03 13:02:09,755 - transformers.tokenization_utils_base - INFO - Didn't find file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/added_tokens.json. We won't load it.
|
11 |
+
2022-07-03 13:02:09,756 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/vocab.txt
|
12 |
+
2022-07-03 13:02:09,756 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/tokenizer.json
|
13 |
+
2022-07-03 13:02:09,756 - transformers.tokenization_utils_base - INFO - loading file None
|
14 |
+
2022-07-03 13:02:09,757 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/special_tokens_map.json
|
15 |
+
2022-07-03 13:02:09,757 - transformers.tokenization_utils_base - INFO - loading file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/tokenizer_config.json
|
16 |
+
2022-07-03 13:02:09,775 - __main__ - INFO - {'input_ids': [[101, 2054, 2785, 1997, 3638, 1029, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 2057, 26438, 2135, 13260, 2017, 2000, 3422, 1037, 2569, 3179, 1997, 2408, 2859, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1059, 2860, 2462, 16209, 2006, 1996, 2307, 3011, 1997, 2859, 1024, 10721, 5758, 1997, 13843, 18003, 3137, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 3061, 4206, 2006, 13843, 18003, 3137, 2003, 1996, 6104, 2000, 1996, 3634, 10435, 5805, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 2009, 2003, 3605, 1997, 1037, 3078, 26261, 2571, 1010, 3905, 26261, 4244, 1010, 1037, 4121, 2461, 6743, 1998, 14400, 3578, 1010, 1998, 1996, 2307, 2813, 1010, 2426, 2060, 2477, 1012, 102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
|
17 |
+
2022-07-03 13:02:09,776 - __main__ - INFO - ['[CLS]', 'what', 'kind', 'of', 'memory', '?', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
18 |
+
2022-07-03 13:02:09,776 - __main__ - INFO - ['[CLS]', 'we', 'respectful', '##ly', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'across', 'china', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
19 |
+
2022-07-03 13:02:09,777 - __main__ - INFO - ['[CLS]', 'w', '##w', 'ii', 'landmarks', 'on', 'the', 'great', 'earth', 'of', 'china', ':', 'eternal', 'memories', 'of', 'tai', '##hang', 'mountain', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
20 |
+
2022-07-03 13:02:09,777 - __main__ - INFO - ['[CLS]', 'standing', 'tall', 'on', 'tai', '##hang', 'mountain', 'is', 'the', 'monument', 'to', 'the', 'hundred', 'regiments', 'offensive', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
21 |
+
2022-07-03 13:02:09,778 - __main__ - INFO - ['[CLS]', 'it', 'is', 'composed', 'of', 'a', 'primary', 'ste', '##le', ',', 'secondary', 'ste', '##les', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'great', 'wall', ',', 'among', 'other', 'things', '.', '[SEP]']
|
22 |
+
2022-07-03 13:02:09,778 - __main__ - INFO - -------------
|
23 |
+
2022-07-03 13:02:09,778 - __main__ - INFO - ['[CLS]', 'we', 'respectful', '##ly', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'across', 'china', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
24 |
+
2022-07-03 13:02:09,779 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
|
25 |
+
2022-07-03 13:02:09,785 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f675dfb45e0> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
|
26 |
+
2022-07-03 13:02:14,916 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[101, 2054, 2785, 1997, 3638, 1029, 102], [101, 2057, 26438, 2135, 13260, 2017, 2000, 3422, 1037, 2569, 3179, 1997, 2408, 2859, 1012, 102], [101, 1059, 2860, 2462, 16209, 2006, 1996, 2307, 3011, 1997, 2859, 1024, 10721, 5758, 1997, 13843, 18003, 3137, 102], [101, 3061, 4206, 2006, 13843, 18003, 3137, 2003, 1996, 6104, 2000, 1996, 3634, 10435, 5805, 1012, 102], [101, 2009, 2003, 3605, 1997, 1037, 3078, 26261, 2571, 1010, 3905, 26261, 4244, 1010, 1037, 4121, 2461, 6743, 1998, 14400, 3578, 1010, 1998, 1996, 2307, 2813, 1010, 2426, 2060, 2477, 1012, 102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100], [-100, 31, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0, -100]]}
|
27 |
+
2022-07-03 13:02:16,871 - transformers.configuration_utils - INFO - loading configuration file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/config.json
|
28 |
+
2022-07-03 13:02:16,873 - transformers.configuration_utils - INFO - Model config DistilBertConfig {
|
29 |
+
"_name_or_path": "models/distilbert-base-uncased_1656660721.137864/checkpoint-14100",
|
30 |
+
"activation": "gelu",
|
31 |
+
"architectures": [
|
32 |
+
"DistilBertForTokenClassification"
|
33 |
+
],
|
34 |
+
"attention_dropout": 0.1,
|
35 |
+
"dim": 768,
|
36 |
+
"dropout": 0.1,
|
37 |
+
"hidden_dim": 3072,
|
38 |
+
"id2label": {
|
39 |
+
"0": "O",
|
40 |
+
"1": "B-PERSON",
|
41 |
+
"2": "I-PERSON",
|
42 |
+
"3": "B-NORP",
|
43 |
+
"4": "I-NORP",
|
44 |
+
"5": "B-FAC",
|
45 |
+
"6": "I-FAC",
|
46 |
+
"7": "B-ORG",
|
47 |
+
"8": "I-ORG",
|
48 |
+
"9": "B-GPE",
|
49 |
+
"10": "I-GPE",
|
50 |
+
"11": "B-LOC",
|
51 |
+
"12": "I-LOC",
|
52 |
+
"13": "B-PRODUCT",
|
53 |
+
"14": "I-PRODUCT",
|
54 |
+
"15": "B-DATE",
|
55 |
+
"16": "I-DATE",
|
56 |
+
"17": "B-TIME",
|
57 |
+
"18": "I-TIME",
|
58 |
+
"19": "B-PERCENT",
|
59 |
+
"20": "I-PERCENT",
|
60 |
+
"21": "B-MONEY",
|
61 |
+
"22": "I-MONEY",
|
62 |
+
"23": "B-QUANTITY",
|
63 |
+
"24": "I-QUANTITY",
|
64 |
+
"25": "B-ORDINAL",
|
65 |
+
"26": "I-ORDINAL",
|
66 |
+
"27": "B-CARDINAL",
|
67 |
+
"28": "I-CARDINAL",
|
68 |
+
"29": "B-EVENT",
|
69 |
+
"30": "I-EVENT",
|
70 |
+
"31": "B-WORK_OF_ART",
|
71 |
+
"32": "I-WORK_OF_ART",
|
72 |
+
"33": "B-LAW",
|
73 |
+
"34": "I-LAW",
|
74 |
+
"35": "B-LANGUAGE",
|
75 |
+
"36": "I-LANGUAGE"
|
76 |
+
},
|
77 |
+
"initializer_range": 0.02,
|
78 |
+
"label2id": {
|
79 |
+
"B-CARDINAL": 27,
|
80 |
+
"B-DATE": 15,
|
81 |
+
"B-EVENT": 29,
|
82 |
+
"B-FAC": 5,
|
83 |
+
"B-GPE": 9,
|
84 |
+
"B-LANGUAGE": 35,
|
85 |
+
"B-LAW": 33,
|
86 |
+
"B-LOC": 11,
|
87 |
+
"B-MONEY": 21,
|
88 |
+
"B-NORP": 3,
|
89 |
+
"B-ORDINAL": 25,
|
90 |
+
"B-ORG": 7,
|
91 |
+
"B-PERCENT": 19,
|
92 |
+
"B-PERSON": 1,
|
93 |
+
"B-PRODUCT": 13,
|
94 |
+
"B-QUANTITY": 23,
|
95 |
+
"B-TIME": 17,
|
96 |
+
"B-WORK_OF_ART": 31,
|
97 |
+
"I-CARDINAL": 28,
|
98 |
+
"I-DATE": 16,
|
99 |
+
"I-EVENT": 30,
|
100 |
+
"I-FAC": 6,
|
101 |
+
"I-GPE": 10,
|
102 |
+
"I-LANGUAGE": 36,
|
103 |
+
"I-LAW": 34,
|
104 |
+
"I-LOC": 12,
|
105 |
+
"I-MONEY": 22,
|
106 |
+
"I-NORP": 4,
|
107 |
+
"I-ORDINAL": 26,
|
108 |
+
"I-ORG": 8,
|
109 |
+
"I-PERCENT": 20,
|
110 |
+
"I-PERSON": 2,
|
111 |
+
"I-PRODUCT": 14,
|
112 |
+
"I-QUANTITY": 24,
|
113 |
+
"I-TIME": 18,
|
114 |
+
"I-WORK_OF_ART": 32,
|
115 |
+
"O": 0
|
116 |
+
},
|
117 |
+
"max_position_embeddings": 512,
|
118 |
+
"model_type": "distilbert",
|
119 |
+
"n_heads": 12,
|
120 |
+
"n_layers": 6,
|
121 |
+
"pad_token_id": 0,
|
122 |
+
"qa_dropout": 0.1,
|
123 |
+
"seq_classif_dropout": 0.2,
|
124 |
+
"sinusoidal_pos_embds": false,
|
125 |
+
"tie_weights_": true,
|
126 |
+
"torch_dtype": "float32",
|
127 |
+
"transformers_version": "4.20.0",
|
128 |
+
"vocab_size": 30522
|
129 |
+
}
|
130 |
+
|
131 |
+
2022-07-03 13:02:17,083 - transformers.modeling_utils - INFO - loading weights file models/distilbert-base-uncased_1656660721.137864/checkpoint-14100/pytorch_model.bin
|
132 |
+
2022-07-03 13:02:18,221 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing DistilBertForTokenClassification.
|
133 |
+
|
134 |
+
2022-07-03 13:02:18,223 - transformers.modeling_utils - INFO - All the weights of DistilBertForTokenClassification were initialized from the model checkpoint at models/distilbert-base-uncased_1656660721.137864/checkpoint-14100.
|
135 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertForTokenClassification for predictions without further training.
|
136 |
+
2022-07-03 13:02:18,226 - __main__ - INFO - DistilBertForTokenClassification(
|
137 |
+
(distilbert): DistilBertModel(
|
138 |
+
(embeddings): Embeddings(
|
139 |
+
(word_embeddings): Embedding(30522, 768, padding_idx=0)
|
140 |
+
(position_embeddings): Embedding(512, 768)
|
141 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
142 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
143 |
+
)
|
144 |
+
(transformer): Transformer(
|
145 |
+
(layer): ModuleList(
|
146 |
+
(0): TransformerBlock(
|
147 |
+
(attention): MultiHeadSelfAttention(
|
148 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
149 |
+
(q_lin): Linear(in_features=768, out_features=768, bias=True)
|
150 |
+
(k_lin): Linear(in_features=768, out_features=768, bias=True)
|
151 |
+
(v_lin): Linear(in_features=768, out_features=768, bias=True)
|
152 |
+
(out_lin): Linear(in_features=768, out_features=768, bias=True)
|
153 |
+
)
|
154 |
+
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(ffn): FFN(
|
156 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
157 |
+
(lin1): Linear(in_features=768, out_features=3072, bias=True)
|
158 |
+
(lin2): Linear(in_features=3072, out_features=768, bias=True)
|
159 |
+
(activation): GELUActivation()
|
160 |
+
)
|
161 |
+
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
162 |
+
)
|
163 |
+
(1): TransformerBlock(
|
164 |
+
(attention): MultiHeadSelfAttention(
|
165 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
166 |
+
(q_lin): Linear(in_features=768, out_features=768, bias=True)
|
167 |
+
(k_lin): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(v_lin): Linear(in_features=768, out_features=768, bias=True)
|
169 |
+
(out_lin): Linear(in_features=768, out_features=768, bias=True)
|
170 |
+
)
|
171 |
+
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
172 |
+
(ffn): FFN(
|
173 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
174 |
+
(lin1): Linear(in_features=768, out_features=3072, bias=True)
|
175 |
+
(lin2): Linear(in_features=3072, out_features=768, bias=True)
|
176 |
+
(activation): GELUActivation()
|
177 |
+
)
|
178 |
+
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
)
|
180 |
+
(2): TransformerBlock(
|
181 |
+
(attention): MultiHeadSelfAttention(
|
182 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
183 |
+
(q_lin): Linear(in_features=768, out_features=768, bias=True)
|
184 |
+
(k_lin): Linear(in_features=768, out_features=768, bias=True)
|
185 |
+
(v_lin): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(out_lin): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
)
|
188 |
+
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
189 |
+
(ffn): FFN(
|
190 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
191 |
+
(lin1): Linear(in_features=768, out_features=3072, bias=True)
|
192 |
+
(lin2): Linear(in_features=3072, out_features=768, bias=True)
|
193 |
+
(activation): GELUActivation()
|
194 |
+
)
|
195 |
+
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
196 |
+
)
|
197 |
+
(3): TransformerBlock(
|
198 |
+
(attention): MultiHeadSelfAttention(
|
199 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
200 |
+
(q_lin): Linear(in_features=768, out_features=768, bias=True)
|
201 |
+
(k_lin): Linear(in_features=768, out_features=768, bias=True)
|
202 |
+
(v_lin): Linear(in_features=768, out_features=768, bias=True)
|
203 |
+
(out_lin): Linear(in_features=768, out_features=768, bias=True)
|
204 |
+
)
|
205 |
+
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
206 |
+
(ffn): FFN(
|
207 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
208 |
+
(lin1): Linear(in_features=768, out_features=3072, bias=True)
|
209 |
+
(lin2): Linear(in_features=3072, out_features=768, bias=True)
|
210 |
+
(activation): GELUActivation()
|
211 |
+
)
|
212 |
+
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
213 |
+
)
|
214 |
+
(4): TransformerBlock(
|
215 |
+
(attention): MultiHeadSelfAttention(
|
216 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
217 |
+
(q_lin): Linear(in_features=768, out_features=768, bias=True)
|
218 |
+
(k_lin): Linear(in_features=768, out_features=768, bias=True)
|
219 |
+
(v_lin): Linear(in_features=768, out_features=768, bias=True)
|
220 |
+
(out_lin): Linear(in_features=768, out_features=768, bias=True)
|
221 |
+
)
|
222 |
+
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
223 |
+
(ffn): FFN(
|
224 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
225 |
+
(lin1): Linear(in_features=768, out_features=3072, bias=True)
|
226 |
+
(lin2): Linear(in_features=3072, out_features=768, bias=True)
|
227 |
+
(activation): GELUActivation()
|
228 |
+
)
|
229 |
+
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
230 |
+
)
|
231 |
+
(5): TransformerBlock(
|
232 |
+
(attention): MultiHeadSelfAttention(
|
233 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
234 |
+
(q_lin): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(k_lin): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(v_lin): Linear(in_features=768, out_features=768, bias=True)
|
237 |
+
(out_lin): Linear(in_features=768, out_features=768, bias=True)
|
238 |
+
)
|
239 |
+
(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
240 |
+
(ffn): FFN(
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
(lin1): Linear(in_features=768, out_features=3072, bias=True)
|
243 |
+
(lin2): Linear(in_features=3072, out_features=768, bias=True)
|
244 |
+
(activation): GELUActivation()
|
245 |
+
)
|
246 |
+
(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
247 |
+
)
|
248 |
+
)
|
249 |
+
)
|
250 |
+
)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
(classifier): Linear(in_features=768, out_features=37, bias=True)
|
253 |
+
)
|
254 |
+
2022-07-03 13:02:18,228 - __main__ - INFO - CONFIGS:{
|
255 |
+
"output_dir": "./models/distilbert-base-uncased_1656833520.4812543",
|
256 |
+
"per_device_train_batch_size": 16,
|
257 |
+
"per_device_eval_batch_size": 16,
|
258 |
+
"save_total_limit": 2,
|
259 |
+
"num_train_epochs": 3,
|
260 |
+
"seed": 1,
|
261 |
+
"load_best_model_at_end": true,
|
262 |
+
"evaluation_strategy": "epoch",
|
263 |
+
"save_strategy": "epoch",
|
264 |
+
"learning_rate": 2e-05,
|
265 |
+
"weight_decay": 0.01,
|
266 |
+
"logging_steps": 469.0
|
267 |
+
}
|
268 |
+
2022-07-03 13:02:18,228 - transformers.training_args - INFO - PyTorch: setting up devices
|
269 |
+
2022-07-03 13:02:18,318 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
270 |
+
2022-07-03 13:02:23,736 - __main__ - INFO - [[ MODEL EVALUATION ]]
|
271 |
+
2022-07-03 13:02:23,736 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `DistilBertForTokenClassification.forward` and have been ignored: id, ner_tags, words. If id, ner_tags, words are not expected by `DistilBertForTokenClassification.forward`, you can safely ignore this message.
|
272 |
+
2022-07-03 13:02:23,752 - transformers.trainer - INFO - ***** Running Evaluation *****
|
273 |
+
2022-07-03 13:02:23,752 - transformers.trainer - INFO - Num examples = 9479
|
274 |
+
2022-07-03 13:02:23,752 - transformers.trainer - INFO - Batch size = 16
|
275 |
+
2022-07-03 13:03:05,412 - __main__ - INFO - {'eval_loss': 0.08268037438392639, 'eval_precision': 0.8460803059273423, 'eval_recall': 0.8647952385182553, 'eval_f1': 0.8553354127311866, 'eval_accuracy': 0.9779158976052459, 'eval_runtime': 41.6535, 'eval_samples_per_second': 227.568, 'eval_steps_per_second': 14.236, 'step': 0}
|
276 |
+
2022-07-03 13:03:05,413 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `DistilBertForTokenClassification.forward` and have been ignored: id, ner_tags, words. If id, ner_tags, words are not expected by `DistilBertForTokenClassification.forward`, you can safely ignore this message.
|
277 |
+
2022-07-03 13:03:05,415 - transformers.trainer - INFO - ***** Running Prediction *****
|
278 |
+
2022-07-03 13:03:05,415 - transformers.trainer - INFO - Num examples = 9479
|
279 |
+
2022-07-03 13:03:05,415 - transformers.trainer - INFO - Batch size = 16
|
280 |
+
2022-07-03 13:03:49,560 - __main__ - INFO - precision recall f1-score support
|
281 |
+
|
282 |
+
CARDINAL 0.84 0.86 0.85 935
|
283 |
+
DATE 0.83 0.88 0.85 1602
|
284 |
+
EVENT 0.57 0.57 0.57 63
|
285 |
+
FAC 0.55 0.62 0.58 135
|
286 |
+
GPE 0.95 0.92 0.94 2240
|
287 |
+
LANGUAGE 0.82 0.64 0.72 22
|
288 |
+
LAW 0.50 0.50 0.50 40
|
289 |
+
LOC 0.55 0.72 0.62 179
|
290 |
+
MONEY 0.87 0.89 0.88 314
|
291 |
+
NORP 0.85 0.89 0.87 841
|
292 |
+
ORDINAL 0.81 0.88 0.84 195
|
293 |
+
ORG 0.81 0.83 0.82 1795
|
294 |
+
PERCENT 0.87 0.89 0.88 349
|
295 |
+
PERSON 0.93 0.93 0.93 1988
|
296 |
+
PRODUCT 0.55 0.55 0.55 76
|
297 |
+
QUANTITY 0.71 0.80 0.75 105
|
298 |
+
TIME 0.59 0.66 0.62 212
|
299 |
+
WORK_OF_ART 0.42 0.44 0.43 166
|
300 |
+
|
301 |
+
micro avg 0.85 0.86 0.86 11257
|
302 |
+
macro avg 0.72 0.75 0.73 11257
|
303 |
+
weighted avg 0.85 0.86 0.86 11257
|
304 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90abb0422b3cb1d31eb8ddd1d30a6d0b45ce52374ad4047c958811f2f9c1afe9
|
3 |
+
size 265598965
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ce7ebac1a927110a5b294fcaed6d87838e6471ad2ea28d6cdd9fdca86fa6b71
|
3 |
+
size 14503
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0271a42487a5a379bf223d761cfc585dcba1a6069b012d2a634c31973187a24e
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_lower_case": true,
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 512,
|
6 |
+
"name_or_path": "distilbert-base-uncased",
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"strip_accents": null,
|
11 |
+
"tokenize_chinese_chars": true,
|
12 |
+
"tokenizer_class": "DistilBertTokenizer",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.08035404235124588,
|
3 |
+
"best_model_checkpoint": "./models/distilbert-base-uncased_1656660721.137864/checkpoint-9400",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"global_step": 14100,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.1,
|
12 |
+
"learning_rate": 1.9334751773049647e-05,
|
13 |
+
"loss": 0.3653,
|
14 |
+
"step": 469
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.2,
|
18 |
+
"learning_rate": 1.866950354609929e-05,
|
19 |
+
"loss": 0.144,
|
20 |
+
"step": 938
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.3,
|
24 |
+
"learning_rate": 1.8004255319148936e-05,
|
25 |
+
"loss": 0.1162,
|
26 |
+
"step": 1407
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.4,
|
30 |
+
"learning_rate": 1.7339007092198585e-05,
|
31 |
+
"loss": 0.1076,
|
32 |
+
"step": 1876
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.5,
|
36 |
+
"learning_rate": 1.667375886524823e-05,
|
37 |
+
"loss": 0.0947,
|
38 |
+
"step": 2345
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.6,
|
42 |
+
"learning_rate": 1.6008510638297874e-05,
|
43 |
+
"loss": 0.0864,
|
44 |
+
"step": 2814
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.7,
|
48 |
+
"learning_rate": 1.534326241134752e-05,
|
49 |
+
"loss": 0.0913,
|
50 |
+
"step": 3283
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.8,
|
54 |
+
"learning_rate": 1.4678014184397164e-05,
|
55 |
+
"loss": 0.076,
|
56 |
+
"step": 3752
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.9,
|
60 |
+
"learning_rate": 1.401276595744681e-05,
|
61 |
+
"loss": 0.0785,
|
62 |
+
"step": 4221
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 1.0,
|
66 |
+
"learning_rate": 1.3347517730496456e-05,
|
67 |
+
"loss": 0.0749,
|
68 |
+
"step": 4690
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 1.0,
|
72 |
+
"eval_accuracy": 0.976376791937681,
|
73 |
+
"eval_f1": 0.8418500066134651,
|
74 |
+
"eval_loss": 0.08329251408576965,
|
75 |
+
"eval_precision": 0.8356967787114846,
|
76 |
+
"eval_recall": 0.8480945189659768,
|
77 |
+
"eval_runtime": 18.0373,
|
78 |
+
"eval_samples_per_second": 525.521,
|
79 |
+
"eval_steps_per_second": 32.876,
|
80 |
+
"step": 4700
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.1,
|
84 |
+
"learning_rate": 1.26822695035461e-05,
|
85 |
+
"loss": 0.061,
|
86 |
+
"step": 5159
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.2,
|
90 |
+
"learning_rate": 1.2017021276595745e-05,
|
91 |
+
"loss": 0.0579,
|
92 |
+
"step": 5628
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 1.3,
|
96 |
+
"learning_rate": 1.1351773049645392e-05,
|
97 |
+
"loss": 0.0564,
|
98 |
+
"step": 6097
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 1.4,
|
102 |
+
"learning_rate": 1.0686524822695037e-05,
|
103 |
+
"loss": 0.0539,
|
104 |
+
"step": 6566
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 1.5,
|
108 |
+
"learning_rate": 1.0021276595744682e-05,
|
109 |
+
"loss": 0.0566,
|
110 |
+
"step": 7035
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 1.6,
|
114 |
+
"learning_rate": 9.356028368794327e-06,
|
115 |
+
"loss": 0.0516,
|
116 |
+
"step": 7504
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 1.7,
|
120 |
+
"learning_rate": 8.690780141843971e-06,
|
121 |
+
"loss": 0.0506,
|
122 |
+
"step": 7973
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 1.8,
|
126 |
+
"learning_rate": 8.025531914893618e-06,
|
127 |
+
"loss": 0.0518,
|
128 |
+
"step": 8442
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.9,
|
132 |
+
"learning_rate": 7.360283687943263e-06,
|
133 |
+
"loss": 0.0485,
|
134 |
+
"step": 8911
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.0,
|
138 |
+
"learning_rate": 6.695035460992908e-06,
|
139 |
+
"loss": 0.0549,
|
140 |
+
"step": 9380
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.0,
|
144 |
+
"eval_accuracy": 0.9773085110774329,
|
145 |
+
"eval_f1": 0.8474291524824263,
|
146 |
+
"eval_loss": 0.08035404235124588,
|
147 |
+
"eval_precision": 0.8435134659390953,
|
148 |
+
"eval_recall": 0.8513813627076485,
|
149 |
+
"eval_runtime": 16.8781,
|
150 |
+
"eval_samples_per_second": 561.614,
|
151 |
+
"eval_steps_per_second": 35.134,
|
152 |
+
"step": 9400
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.1,
|
156 |
+
"learning_rate": 6.029787234042554e-06,
|
157 |
+
"loss": 0.0359,
|
158 |
+
"step": 9849
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 2.2,
|
162 |
+
"learning_rate": 5.3645390070921985e-06,
|
163 |
+
"loss": 0.0357,
|
164 |
+
"step": 10318
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 2.3,
|
168 |
+
"learning_rate": 4.699290780141844e-06,
|
169 |
+
"loss": 0.0365,
|
170 |
+
"step": 10787
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.39,
|
174 |
+
"learning_rate": 4.03404255319149e-06,
|
175 |
+
"loss": 0.0373,
|
176 |
+
"step": 11256
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 2.49,
|
180 |
+
"learning_rate": 3.368794326241135e-06,
|
181 |
+
"loss": 0.0356,
|
182 |
+
"step": 11725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 2.59,
|
186 |
+
"learning_rate": 2.70354609929078e-06,
|
187 |
+
"loss": 0.0344,
|
188 |
+
"step": 12194
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 2.69,
|
192 |
+
"learning_rate": 2.0382978723404254e-06,
|
193 |
+
"loss": 0.0394,
|
194 |
+
"step": 12663
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 2.79,
|
198 |
+
"learning_rate": 1.373049645390071e-06,
|
199 |
+
"loss": 0.035,
|
200 |
+
"step": 13132
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 2.89,
|
204 |
+
"learning_rate": 7.078014184397164e-07,
|
205 |
+
"loss": 0.04,
|
206 |
+
"step": 13601
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 2.99,
|
210 |
+
"learning_rate": 4.2553191489361707e-08,
|
211 |
+
"loss": 0.0372,
|
212 |
+
"step": 14070
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 3.0,
|
216 |
+
"eval_accuracy": 0.9779158976052459,
|
217 |
+
"eval_f1": 0.8553354127311866,
|
218 |
+
"eval_loss": 0.08268037438392639,
|
219 |
+
"eval_precision": 0.8460803059273423,
|
220 |
+
"eval_recall": 0.8647952385182553,
|
221 |
+
"eval_runtime": 17.8553,
|
222 |
+
"eval_samples_per_second": 530.88,
|
223 |
+
"eval_steps_per_second": 33.211,
|
224 |
+
"step": 14100
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"max_steps": 14100,
|
228 |
+
"num_train_epochs": 3,
|
229 |
+
"total_flos": 3077290776098406.0,
|
230 |
+
"trial_name": null,
|
231 |
+
"trial_params": null
|
232 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:694d10c457070b66b25dbe55956043811ff557cad90e9e07618293e9a364e694
|
3 |
+
size 3375
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|