|
import os |
|
os.system('pip install paddlepaddle==2.4.2') |
|
|
|
os.system('pip install paddleocr') |
|
from paddleocr import PaddleOCR, draw_ocr |
|
from PIL import Image |
|
from typing import Dict, List, Any |
|
import base64 |
|
from io import BytesIO |
|
import numpy as np |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipeline = PaddleOCR(lang="en",ocr_version="PP-OCRv4", |
|
show_log = False,use_gpu=False, |
|
det_model_dir=path, |
|
cls_model_dir=path, |
|
rec_model_dir=path |
|
) |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
receipt_image = Image.open(BytesIO(base64.b64decode(inputs))) |
|
receipt_image_array = np.array(receipt_image.convert('RGB')) |
|
result = self.pipeline.ocr(receipt_image_array,cls=True) |
|
txts = [line[1][0] for line in result[0]] |
|
|
|
extract = "".join(txts) |
|
|
|
return extract |