import os os.system('pip install paddlepaddle==2.4.2') # os.system('pip install paddlepaddle==0.0.0 -f https://www.paddlepaddle.org.cn/whl/linux/cpu-mkl/develop.html') os.system('pip install paddleocr') from paddleocr import PaddleOCR, draw_ocr from PIL import Image from typing import Dict, List, Any import base64 from io import BytesIO import numpy as np class EndpointHandler(): def __init__(self, path=""): self.pipeline = PaddleOCR(lang="en",ocr_version="PP-OCRv4", show_log = False,use_gpu=False, det_model_dir=path, cls_model_dir=path, rec_model_dir=path ) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ inputs = data.pop("inputs", data) #parameters = data.pop("parameters", None) receipt_image = Image.open(BytesIO(base64.b64decode(inputs))) receipt_image_array = np.array(receipt_image.convert('RGB')) result = self.pipeline.ocr(receipt_image_array,cls=True) txts = [line[1][0] for line in result[0]] # pass inputs with all kwargs in data extract = "".join(txts) # postprocess the prediction return extract