dkimds commited on
Commit
39b66ec
·
1 Parent(s): 851ece5

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.18 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cf3ffc4eca306eed6f863d914f48a1eee886f9007694f7bcc22d7a9f935159f
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7990bcc940d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7990bcc863c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692854792798055918,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh/xAPjn0MDzHEtg+h/xAPjn0MDzHEtg+lksovl0PPz51/k6+h/xAPjn0MDzHEtg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8aI5P80Zj7+ZqiM/MFG9vzKsv71r5U2/m2Zvv8Ejwz6+SL+/C1y2vpfsxD/KH4Y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACH/EA+OfQwPMcS2D76evY+Y8SFu/EQwj6H/EA+OfQwPMcS2D76evY+Y8SFu/EQwj6WSyi+XQ8/PnX+Tr7OzOG/Gs8gPsjArb+H/EA+OfQwPMcS2D76evY+Y8SFu/EQwj6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.18846332 0.01080041 0.42201826]\n [ 0.18846332 0.01080041 0.42201826]\n [-0.16435084 0.18658204 -0.20214255]\n [ 0.18846332 0.01080041 0.42201826]]",
34
+ "desired_goal": "[[ 0.72514254 -1.1179749 0.63932186]\n [-1.4790401 -0.09359016 -0.8042819 ]\n [-0.9351594 0.38113216 -1.4944074 ]\n [-0.35617098 1.5384701 1.0478451 ]]",
35
+ "observation": "[[ 0.18846332 0.01080041 0.42201826 0.481407 -0.00408225 0.3790355 ]\n [ 0.18846332 0.01080041 0.42201826 0.481407 -0.00408225 0.3790355 ]\n [-0.16435084 0.18658204 -0.20214255 -1.7640626 0.15704003 -1.3574457 ]\n [ 0.18846332 0.01080041 0.42201826 0.481407 -0.00408225 0.3790355 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGvIBPs410TzTrJA9YAJfvD5Fp73GunY+BrBSvaKbEL1GyUw+73+iPS4GpbwFlIc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.1269001 0.02553835 0.07064214]\n [-0.01361141 -0.08167504 0.24094686]\n [-0.0514374 -0.03530467 0.19998655]\n [ 0.07934558 -0.02014455 0.06620029]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9cGX5WRzRyMAWyUSwOMAXSUR0CjzRcF6iTMdX2UKGgGR7/Pr8BMi8nNaAdLA2gIR0CjzM9f9gnddX2UKGgGR7/EN3np0OmSaAdLA2gIR0CjzVorvsqsdX2UKGgGR7/UqtHQQcxTaAdLBWgIR0CjzJb70nPWdX2UKGgGR7+66d1+y7f6aAdLAmgIR0CjzSBhQWN4dX2UKGgGR7/C0aZQYUFjaAdLAmgIR0CjzNiqyWzGdX2UKGgGR7+3dM0xdpqRaAdLAmgIR0CjzJ88kleGdX2UKGgGR7/MU+s5n13/aAdLA2gIR0CjzWbuDzy0dX2UKGgGR7+4EA5q/M4caAdLAmgIR0CjzOCosI3SdX2UKGgGR7/Q2ETQE6kqaAdLA2gIR0CjzS71qWTpdX2UKGgGR7+7yZrpJPIoaAdLAmgIR0CjzKn2h7E6dX2UKGgGR7/NVCHARChOaAdLA2gIR0CjzXXx4IKMdX2UKGgGR7/PVT72tdRjaAdLA2gIR0CjzO+7tiQUdX2UKGgGR7/Wb1yvLX+VaAdLA2gIR0CjzTuPV/c4dX2UKGgGR7/WeJpFkQPJaAdLA2gIR0CjzLb4i5d4dX2UKGgGR7/BWCEpRXOoaAdLAmgIR0CjzPhpxm03dX2UKGgGR7/GvnKW9lEraAdLA2gIR0CjzYUs4DLbdX2UKGgGR7+y+dsi0OVgaAdLAmgIR0CjzMG2LHdXdX2UKGgGR7/I7NB4Uvf1aAdLA2gIR0CjzUrZJ04jdX2UKGgGR7+25f+jua4MaAdLAmgIR0CjzY2WpqASdX2UKGgGR7/AZv1lGwzMaAdLAmgIR0CjzMpD/lySdX2UKGgGR7/BMLWqcVgyaAdLAmgIR0CjzVN6w+t9dX2UKGgGR7/deqJdjXnRaAdLBGgIR0CjzQvRZ2ZBdX2UKGgGR7/RK6nR9gF5aAdLA2gIR0CjzZz2WY4RdX2UKGgGR7/GhtcfNiYtaAdLA2gIR0CjzNmKhtcfdX2UKGgGR7/c63y7PIGRaAdLBGgIR0CjzWb2L5ymdX2UKGgGR7/VW+GoJiRXaAdLBGgIR0CjzR9ZA6dUdX2UKGgGR7/YutOmBOHnaAdLBGgIR0Cjza3h4t6HdX2UKGgGR7/AVclgMMJAaAdLAmgIR0CjzW+hf0EpdX2UKGgGR7/Q1mrbQC0XaAdLBGgIR0CjzOqp97WvdX2UKGgGR7/U8pTdcjZ+aAdLBGgIR0CjzTIegctHdX2UKGgGR7/VlolD4QBgaAdLA2gIR0CjzbztTkyUdX2UKGgGR7/MkvboKUmlaAdLA2gIR0CjzX6be/HpdX2UKGgGR7/S0T101ZTyaAdLA2gIR0CjzPnr6ciGdX2UKGgGR7/A+Sr5qM3qaAdLAmgIR0CjzcYmsvIwdX2UKGgGR7/DdqtYB/7SaAdLAmgIR0CjzQMe4kNXdX2UKGgGR7+WtMfzSThYaAdLAWgIR0Cjzc0JfICEdX2UKGgGR7/UYzi0fHPvaAdLA2gIR0CjzY7fxc3VdX2UKGgGR7/aRHPNVzZIaAdLBGgIR0CjzUdUsFt9dX2UKGgGR7/AhllK9PDYaAdLAmgIR0CjzZfag261dX2UKGgGR7/O6xPfsNUgaAdLA2gIR0CjzRMZ5zHTdX2UKGgGR7/K5byH2ys0aAdLA2gIR0CjzdsDnvDxdX2UKGgGR7/QJTVDrqt6aAdLA2gIR0CjzVURODaodX2UKGgGR7+6wxFiKBNFaAdLAmgIR0CjzecIZ62OdX2UKGgGR7/TVJtix3V1aAdLA2gIR0CjzSQNLDhtdX2UKGgGR7/br8R+SbH7aAdLBGgIR0Cjza2vStvGdX2UKGgGR7+dPUKArhBJaAdLAWgIR0CjzSlHavicdX2UKGgGR7/BDfm9xp+MaAdLAmgIR0CjzfE5p8F7dX2UKGgGR7/bisXBP9DQaAdLBGgIR0CjzWsrEtNBdX2UKGgGR7/A86FM7EHdaAdLAmgIR0CjzTJGOMl1dX2UKGgGR7/R6I3zcynDaAdLA2gIR0CjzgA8B+4LdX2UKGgGR7/aEEC/47A+aAdLBGgIR0CjzcG+bmU4dX2UKGgGR7/U0+1SflIVaAdLA2gIR0CjzXoNVinYdX2UKGgGR7/JLxI8QqZuaAdLA2gIR0CjzUDD0lJIdX2UKGgGR7+06+36Q/5daAdLAmgIR0CjzcnEl3QldX2UKGgGR7/MU7jkuHvdaAdLA2gIR0Cjzgx6F/QTdX2UKGgGR7/HlXA/LTx5aAdLA2gIR0CjzYZE2HcldX2UKGgGR7/BNCZ4Oc2BaAdLAmgIR0CjzdIlD4QCdX2UKGgGR7+gUeuFHrhSaAdLAWgIR0CjzdjLbHp9dX2UKGgGR7+4QOFxn3+NaAdLAmgIR0CjzZEcbR4RdX2UKGgGR7/W39JjDsMRaAdLBGgIR0CjzVQlKK51dX2UKGgGR7/YJw84gieNaAdLBGgIR0Cjzh/BN21VdX2UKGgGR7/B5M10knkUaAdLAmgIR0CjzZmyxA0LdX2UKGgGR7/FyoXKr7wbaAdLA2gIR0CjzeXJPqLTdX2UKGgGR7+k5IYm9g4PaAdLAWgIR0CjzZ4sEq2CdX2UKGgGR7/QXNke6qbSaAdLA2gIR0CjzWE5p8F7dX2UKGgGR7/PHsC1Z1V6aAdLA2gIR0Cjzi8JtzjndX2UKGgGR7+Ufkmx+rlvaAdLAWgIR0CjzjL1dxACdX2UKGgGR7/UWrwOOKfnaAdLA2gIR0Cjzaz2OAAidX2UKGgGR7/Jw1ivxH5KaAdLA2gIR0CjzW/a6BiDdX2UKGgGR7/M/+sHSncdaAdLBGgIR0CjzfkNe+mFdX2UKGgGR7++UW2w3YL9aAdLAmgIR0CjzbT+FUQ1dX2UKGgGR7/Lehwl0HQhaAdLA2gIR0Cjzj+u3c59dX2UKGgGR7+44m1IAfdRaAdLAmgIR0CjzgFOO802dX2UKGgGR7/RfFrEcbR4aAdLA2gIR0CjzXxgRbr1dX2UKGgGR7+3+XJHRTjvaAdLAmgIR0Cjzb+zD4xldX2UKGgGR7++fFrEcbR4aAdLAmgIR0CjzkoQFs55dX2UKGgGR7+kug6EJ0GNaAdLAWgIR0Cjzk4MF2V3dX2UKGgGR7/YFIuoP07KaAdLA2gIR0Cjzg+ii7CjdX2UKGgGR7+zh60IC2c8aAdLAmgIR0CjzcfmT1TSdX2UKGgGR7/SzHCGetjkaAdLA2gIR0CjzYq77Kq5dX2UKGgGR7/ECpWFN+LFaAdLAmgIR0CjzdD3M6ikdX2UKGgGR7/Jfxc3VCokaAdLA2gIR0Cjzl2VmjCYdX2UKGgGR7/M9U0elsP8aAdLA2gIR0Cjzh+bVjI8dX2UKGgGR7/SZ5zHS4OMaAdLA2gIR0CjzZrLQokSdX2UKGgGR7+3T5O8CgbqaAdLAmgIR0CjzdxR2r4ndX2UKGgGR7+/jo6jnFHbaAdLAmgIR0Cjzif4REncdX2UKGgGR7+9BLPD50r9aAdLAmgIR0CjzaLpRoAXdX2UKGgGR7/HCAMDwH7haAdLA2gIR0Cjzmq2BreqdX2UKGgGR7+myC4BmwqzaAdLAWgIR0CjzixQaaTfdX2UKGgGR7+/WlMyrPt2aAdLAmgIR0CjzeShSLqEdX2UKGgGR7/RM7U5MlC1aAdLA2gIR0CjzbDTjNpudX2UKGgGR7/RJyhi9ZieaAdLA2gIR0CjzniCjDbbdX2UKGgGR7/Qbj94u9OAaAdLA2gIR0CjzjomgJ1JdX2UKGgGR7/ZWluWKMvRaAdLBGgIR0CjzfaMrEtNdX2UKGgGR7+xFpfx+a0AaAdLAmgIR0Cjzbl7D2rXdX2UKGgGR7+mhkAggX/HaAdLAWgIR0CjzfqzqrzYdX2UKGgGR7/RrIYFaB7NaAdLA2gIR0CjzoT9CNS7dX2UKGgGR7/ICKaXrt3OaAdLA2gIR0CjzkbXHzYmdX2UKGgGR7/Ckpqh11W9aAdLAmgIR0CjzcIXKr7wdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db0016a665476c624cae140ed97d009915d2292c56be76406e935e13bec56309
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ab83d3e674228ca8e95ab09a2e61374d175ab68f60f8d4d41f38ccc920bca8a
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7990bcc940d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7990bcc863c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692854792798055918, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh/xAPjn0MDzHEtg+h/xAPjn0MDzHEtg+lksovl0PPz51/k6+h/xAPjn0MDzHEtg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8aI5P80Zj7+ZqiM/MFG9vzKsv71r5U2/m2Zvv8Ejwz6+SL+/C1y2vpfsxD/KH4Y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACH/EA+OfQwPMcS2D76evY+Y8SFu/EQwj6H/EA+OfQwPMcS2D76evY+Y8SFu/EQwj6WSyi+XQ8/PnX+Tr7OzOG/Gs8gPsjArb+H/EA+OfQwPMcS2D76evY+Y8SFu/EQwj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.18846332 0.01080041 0.42201826]\n [ 0.18846332 0.01080041 0.42201826]\n [-0.16435084 0.18658204 -0.20214255]\n [ 0.18846332 0.01080041 0.42201826]]", "desired_goal": "[[ 0.72514254 -1.1179749 0.63932186]\n [-1.4790401 -0.09359016 -0.8042819 ]\n [-0.9351594 0.38113216 -1.4944074 ]\n [-0.35617098 1.5384701 1.0478451 ]]", "observation": "[[ 0.18846332 0.01080041 0.42201826 0.481407 -0.00408225 0.3790355 ]\n [ 0.18846332 0.01080041 0.42201826 0.481407 -0.00408225 0.3790355 ]\n [-0.16435084 0.18658204 -0.20214255 -1.7640626 0.15704003 -1.3574457 ]\n [ 0.18846332 0.01080041 0.42201826 0.481407 -0.00408225 0.3790355 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGvIBPs410TzTrJA9YAJfvD5Fp73GunY+BrBSvaKbEL1GyUw+73+iPS4GpbwFlIc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1269001 0.02553835 0.07064214]\n [-0.01361141 -0.08167504 0.24094686]\n [-0.0514374 -0.03530467 0.19998655]\n [ 0.07934558 -0.02014455 0.06620029]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9cGX5WRzRyMAWyUSwOMAXSUR0CjzRcF6iTMdX2UKGgGR7/Pr8BMi8nNaAdLA2gIR0CjzM9f9gnddX2UKGgGR7/EN3np0OmSaAdLA2gIR0CjzVorvsqsdX2UKGgGR7/UqtHQQcxTaAdLBWgIR0CjzJb70nPWdX2UKGgGR7+66d1+y7f6aAdLAmgIR0CjzSBhQWN4dX2UKGgGR7/C0aZQYUFjaAdLAmgIR0CjzNiqyWzGdX2UKGgGR7+3dM0xdpqRaAdLAmgIR0CjzJ88kleGdX2UKGgGR7/MU+s5n13/aAdLA2gIR0CjzWbuDzy0dX2UKGgGR7+4EA5q/M4caAdLAmgIR0CjzOCosI3SdX2UKGgGR7/Q2ETQE6kqaAdLA2gIR0CjzS71qWTpdX2UKGgGR7+7yZrpJPIoaAdLAmgIR0CjzKn2h7E6dX2UKGgGR7/NVCHARChOaAdLA2gIR0CjzXXx4IKMdX2UKGgGR7/PVT72tdRjaAdLA2gIR0CjzO+7tiQUdX2UKGgGR7/Wb1yvLX+VaAdLA2gIR0CjzTuPV/c4dX2UKGgGR7/WeJpFkQPJaAdLA2gIR0CjzLb4i5d4dX2UKGgGR7/BWCEpRXOoaAdLAmgIR0CjzPhpxm03dX2UKGgGR7/GvnKW9lEraAdLA2gIR0CjzYUs4DLbdX2UKGgGR7+y+dsi0OVgaAdLAmgIR0CjzMG2LHdXdX2UKGgGR7/I7NB4Uvf1aAdLA2gIR0CjzUrZJ04jdX2UKGgGR7+25f+jua4MaAdLAmgIR0CjzY2WpqASdX2UKGgGR7/AZv1lGwzMaAdLAmgIR0CjzMpD/lySdX2UKGgGR7/BMLWqcVgyaAdLAmgIR0CjzVN6w+t9dX2UKGgGR7/deqJdjXnRaAdLBGgIR0CjzQvRZ2ZBdX2UKGgGR7/RK6nR9gF5aAdLA2gIR0CjzZz2WY4RdX2UKGgGR7/GhtcfNiYtaAdLA2gIR0CjzNmKhtcfdX2UKGgGR7/c63y7PIGRaAdLBGgIR0CjzWb2L5ymdX2UKGgGR7/VW+GoJiRXaAdLBGgIR0CjzR9ZA6dUdX2UKGgGR7/YutOmBOHnaAdLBGgIR0Cjza3h4t6HdX2UKGgGR7/AVclgMMJAaAdLAmgIR0CjzW+hf0EpdX2UKGgGR7/Q1mrbQC0XaAdLBGgIR0CjzOqp97WvdX2UKGgGR7/U8pTdcjZ+aAdLBGgIR0CjzTIegctHdX2UKGgGR7/VlolD4QBgaAdLA2gIR0CjzbztTkyUdX2UKGgGR7/MkvboKUmlaAdLA2gIR0CjzX6be/HpdX2UKGgGR7/S0T101ZTyaAdLA2gIR0CjzPnr6ciGdX2UKGgGR7/A+Sr5qM3qaAdLAmgIR0CjzcYmsvIwdX2UKGgGR7/DdqtYB/7SaAdLAmgIR0CjzQMe4kNXdX2UKGgGR7+WtMfzSThYaAdLAWgIR0Cjzc0JfICEdX2UKGgGR7/UYzi0fHPvaAdLA2gIR0CjzY7fxc3VdX2UKGgGR7/aRHPNVzZIaAdLBGgIR0CjzUdUsFt9dX2UKGgGR7/AhllK9PDYaAdLAmgIR0CjzZfag261dX2UKGgGR7/O6xPfsNUgaAdLA2gIR0CjzRMZ5zHTdX2UKGgGR7/K5byH2ys0aAdLA2gIR0CjzdsDnvDxdX2UKGgGR7/QJTVDrqt6aAdLA2gIR0CjzVURODaodX2UKGgGR7+6wxFiKBNFaAdLAmgIR0CjzecIZ62OdX2UKGgGR7/TVJtix3V1aAdLA2gIR0CjzSQNLDhtdX2UKGgGR7/br8R+SbH7aAdLBGgIR0Cjza2vStvGdX2UKGgGR7+dPUKArhBJaAdLAWgIR0CjzSlHavicdX2UKGgGR7/BDfm9xp+MaAdLAmgIR0CjzfE5p8F7dX2UKGgGR7/bisXBP9DQaAdLBGgIR0CjzWsrEtNBdX2UKGgGR7/A86FM7EHdaAdLAmgIR0CjzTJGOMl1dX2UKGgGR7/R6I3zcynDaAdLA2gIR0CjzgA8B+4LdX2UKGgGR7/aEEC/47A+aAdLBGgIR0CjzcG+bmU4dX2UKGgGR7/U0+1SflIVaAdLA2gIR0CjzXoNVinYdX2UKGgGR7/JLxI8QqZuaAdLA2gIR0CjzUDD0lJIdX2UKGgGR7+06+36Q/5daAdLAmgIR0CjzcnEl3QldX2UKGgGR7/MU7jkuHvdaAdLA2gIR0Cjzgx6F/QTdX2UKGgGR7/HlXA/LTx5aAdLA2gIR0CjzYZE2HcldX2UKGgGR7/BNCZ4Oc2BaAdLAmgIR0CjzdIlD4QCdX2UKGgGR7+gUeuFHrhSaAdLAWgIR0CjzdjLbHp9dX2UKGgGR7+4QOFxn3+NaAdLAmgIR0CjzZEcbR4RdX2UKGgGR7/W39JjDsMRaAdLBGgIR0CjzVQlKK51dX2UKGgGR7/YJw84gieNaAdLBGgIR0Cjzh/BN21VdX2UKGgGR7/B5M10knkUaAdLAmgIR0CjzZmyxA0LdX2UKGgGR7/FyoXKr7wbaAdLA2gIR0CjzeXJPqLTdX2UKGgGR7+k5IYm9g4PaAdLAWgIR0CjzZ4sEq2CdX2UKGgGR7/QXNke6qbSaAdLA2gIR0CjzWE5p8F7dX2UKGgGR7/PHsC1Z1V6aAdLA2gIR0Cjzi8JtzjndX2UKGgGR7+Ufkmx+rlvaAdLAWgIR0CjzjL1dxACdX2UKGgGR7/UWrwOOKfnaAdLA2gIR0Cjzaz2OAAidX2UKGgGR7/Jw1ivxH5KaAdLA2gIR0CjzW/a6BiDdX2UKGgGR7/M/+sHSncdaAdLBGgIR0CjzfkNe+mFdX2UKGgGR7++UW2w3YL9aAdLAmgIR0CjzbT+FUQ1dX2UKGgGR7/Lehwl0HQhaAdLA2gIR0Cjzj+u3c59dX2UKGgGR7+44m1IAfdRaAdLAmgIR0CjzgFOO802dX2UKGgGR7/RfFrEcbR4aAdLA2gIR0CjzXxgRbr1dX2UKGgGR7+3+XJHRTjvaAdLAmgIR0Cjzb+zD4xldX2UKGgGR7++fFrEcbR4aAdLAmgIR0CjzkoQFs55dX2UKGgGR7+kug6EJ0GNaAdLAWgIR0Cjzk4MF2V3dX2UKGgGR7/YFIuoP07KaAdLA2gIR0Cjzg+ii7CjdX2UKGgGR7+zh60IC2c8aAdLAmgIR0CjzcfmT1TSdX2UKGgGR7/SzHCGetjkaAdLA2gIR0CjzYq77Kq5dX2UKGgGR7/ECpWFN+LFaAdLAmgIR0CjzdD3M6ikdX2UKGgGR7/Jfxc3VCokaAdLA2gIR0Cjzl2VmjCYdX2UKGgGR7/M9U0elsP8aAdLA2gIR0Cjzh+bVjI8dX2UKGgGR7/SZ5zHS4OMaAdLA2gIR0CjzZrLQokSdX2UKGgGR7+3T5O8CgbqaAdLAmgIR0CjzdxR2r4ndX2UKGgGR7+/jo6jnFHbaAdLAmgIR0Cjzif4REncdX2UKGgGR7+9BLPD50r9aAdLAmgIR0CjzaLpRoAXdX2UKGgGR7/HCAMDwH7haAdLA2gIR0Cjzmq2BreqdX2UKGgGR7+myC4BmwqzaAdLAWgIR0CjzixQaaTfdX2UKGgGR7+/WlMyrPt2aAdLAmgIR0CjzeShSLqEdX2UKGgGR7/RM7U5MlC1aAdLA2gIR0CjzbDTjNpudX2UKGgGR7/RJyhi9ZieaAdLA2gIR0CjzniCjDbbdX2UKGgGR7/Qbj94u9OAaAdLA2gIR0CjzjomgJ1JdX2UKGgGR7/ZWluWKMvRaAdLBGgIR0CjzfaMrEtNdX2UKGgGR7+xFpfx+a0AaAdLAmgIR0Cjzbl7D2rXdX2UKGgGR7+mhkAggX/HaAdLAWgIR0CjzfqzqrzYdX2UKGgGR7/RrIYFaB7NaAdLA2gIR0CjzoT9CNS7dX2UKGgGR7/ICKaXrt3OaAdLA2gIR0CjzkbXHzYmdX2UKGgGR7/Ckpqh11W9aAdLAmgIR0CjzcIXKr7wdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (665 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.1838721174746752, "std_reward": 0.11794710730483231, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-24T06:12:25.699614"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36396c3bcbdbe53a11fa445333c3fef7e87f9d609b87c38b4ed981816e7297d0
3
+ size 2623