Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.35 +/- 13.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ca826dac0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ca826dac160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ca826dac1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ca826dac280>", "_build": "<function ActorCriticPolicy._build at 0x7ca826dac310>", "forward": "<function ActorCriticPolicy.forward at 0x7ca826dac3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ca826dac430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ca826dac4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ca826dac550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ca826dac5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ca826dac670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ca826dac700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ca826d96d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690861098767453689, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK3ISj5Izcu8dMdGPNwg1brkaTa+5sykuwAAgD8AAIA/miDMPVy/WLqWBgE8RK24NRz+cDu+D6g0AACAPwAAAAAAlD8+NBbCvIDfgTxAoRW7hbQpvt3Q6LsAAIA/AACAPzPuXD2LdFU/w4gcPey9rr6zW5G7hbElvQAAAAAAAAAApsOKPUhng7rLjS44mhIgM0mZ4bqo9kq3AACAPwAAgD+A/E4+IKC0PvKwu71j4LK+Mw4kPf5vkDwAAAAAAAAAAEDt0j3DOTu6o/cWuuVfFjblPeY5cFQuOQAAgD8AAIA/ABD3uhSIiLrT3nk766DBNik1gzpDXpG6AACAPwAAgD+aoXM7XM94uj2dTLPXbTIvHTAYOzPyvTMAAIA/AACAPzMfZT1kPYw/VP0OPoxW875tYMk9vZtBPgAAAAAAAAAAzQY7veEApboGqXS5j5pztEjDfTpfe4w4AACAPwAAgD+ApZ29TmvNPc5vkz7SLUu+ZQmjPPiyCz0AAAAAAAAAAIBM1L3xkHM+tXJQPkwZjL6LaP887A4HugAAAAAAAAAAZv0RPUhBjrr685A2d0rSMOox+7r2D6a1AACAPwAAgD/aTow99pR9uqNJ+Da8Pfsx3pObulLpELYAAIA/AACAP8164D3DSzi8+hmqPe8OU75oykk845RyvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAQKz3RG+eMAWyUTckCjAF0lEdAlWe+8PFvRHV9lChoBkdAZNBHp8neBWgHTegDaAhHQJVn26oVEeB1fZQoaAZHQHA3ENKAavRoB02QAmgIR0CVaVpPRArydX2UKGgGR0BlQX3Dej20aAdN6ANoCEdAlW2Q6Mir1nV9lChoBkdAZankauOjqWgHTegDaAhHQJVt6ciGFi91fZQoaAZHQEr3AjY7JXBoB0vGaAhHQJVyUr4Fia11fZQoaAZHQHKP8qvvBrNoB00pAmgIR0CVc2/dIoVmdX2UKGgGR0Bhnk32mHgxaAdN6ANoCEdAlXv+uV5a/3V9lChoBkdAaLVa24NI9WgHTegDaAhHQJV9FEZzgdh1fZQoaAZHQGDMbQC0WuZoB03oA2gIR0CVgWitaIN3dX2UKGgGR0BxT1JmNBGAaAdNzAFoCEdAlYF7wOOKfnV9lChoBkdAb84+fywwCmgHTdQCaAhHQJWI4eGO+7F1fZQoaAZHQHF78gpz90loB02WA2gIR0CVieEjPfKqdX2UKGgGR0BkN5HRTjvNaAdN6ANoCEdAlZCpR4yGjHV9lChoBkdAchYQ9ic5KmgHTTsCaAhHQJWRgR6F/QV1fZQoaAZHQHJVQRChN/RoB033AWgIR0CVktF0xM37dX2UKGgGR0A5WNA1NxlyaAdL22gIR0CVlgo3Jgb7dX2UKGgGR0BoPaGzru6VaAdN6ANoCEdAlZYLQ5WBBnV9lChoBkdAb7Z/io86m2gHTbIDaAhHQJWW0SQHRkV1fZQoaAZHQEb7rrPdEb5oB0vLaAhHQJWgtxFRYRx1fZQoaAZHQGXwJxvNu+BoB03oA2gIR0CVsq+hGpdbdX2UKGgGR0BtC38O09haaAdNEQFoCEdAlbMB59mYjXV9lChoBkdAYgbAcDKYA2gHTegDaAhHQJW009SuQp51fZQoaAZHQF6WPCl7+kxoB03oA2gIR0CVtvGOuJUHdX2UKGgGR0BwixSCOFQEaAdNYwFoCEdAlbcZ9y925nV9lChoBkdAcCrRbKRuCWgHTYQBaAhHQJW4Q4ecQRR1fZQoaAZHQGXWHHeaa1FoB03oA2gIR0CVu6y2hIvrdX2UKGgGR0BveHmgam4zaAdNeQFoCEdAlbyu40/GEXV9lChoBkdAcIfpx3mmtWgHTQgDaAhHQJW/F+WnjyZ1fZQoaAZHQGYM0hV2icpoB03oA2gIR0CVwAnDziCKdX2UKGgGR0BypR0jkdWAaAdNnANoCEdAlcWhNRFZxXV9lChoBkdAcTdlnh86WGgHTUABaAhHQJXF5bPhQ3x1fZQoaAZHQGJUioKlYU5oB03oA2gIR0CVxj+NcW0rdX2UKGgGR0BhrhA8jiXIaAdN6ANoCEdAlcbDCDVYp3V9lChoBkdAcQcIVdonKGgHTR4BaAhHQJXH7iQ1aW51fZQoaAZHQGa1FF+d9UloB03oA2gIR0CVzU0cfeUIdX2UKGgGR0Bw3vUDuBtlaAdNTAFoCEdAlc11Z5iVjnV9lChoBkdAcW5NN8E3bWgHTYkBaAhHQJXNmxD9fkZ1fZQoaAZHQG8qWhysCDFoB01DAmgIR0CVzpeFtbcHdX2UKGgGR0Bxvrmgam4zaAdNWAJoCEdAlc8CjgydnXV9lChoBkdAcH8KdQO4G2gHTS4DaAhHQJXQBfShJy11fZQoaAZHQHModt65XltoB03zAWgIR0CV1dSkTHsDdX2UKGgGR0BxoT0e2d/baAdN+AJoCEdAldmtAX2ugnV9lChoBkdAYPznnMdLhGgHTegDaAhHQJXlefthNM51fZQoaAZHQHFjXDJlrdpoB01+AWgIR0CV5ZLRKHwgdX2UKGgGR0Bxx2NWEK3NaAdNvwFoCEdAleXOd9Ujs3V9lChoBkdAYGbGACnxa2gHTegDaAhHQJX585n13+x1fZQoaAZHQHDOTxLCemNoB02tAmgIR0CV+9Hggow3dX2UKGgGR0Bxql+AmReUaAdNhAJoCEdAlfw7+5vtMXV9lChoBkdAY7Gv+wTufGgHTegDaAhHQJX8oMAmzB11fZQoaAZHQHBwAZ0jkdVoB012AmgIR0CWA9U6gdwOdX2UKGgGR0BwaOol2NedaAdNAAJoCEdAlgWSEDhcaHV9lChoBkdAcZlIEKVpsWgHTeYCaAhHQJYH0XyiEg51fZQoaAZHQG6Q0uUUwi9oB02nA2gIR0CWCBJBgNPQdX2UKGgGR0Bn/axC6YmcaAdN6ANoCEdAlgwdMj/uLXV9lChoBkdAYTa46wMYuWgHTegDaAhHQJYMzbfxc3V1fZQoaAZHQG1tkTQE6ktoB012AWgIR0CWDQ8DB/I9dX2UKGgGR0BwLx8zAN5MaAdNxANoCEdAlhLpr1uivnV9lChoBkdAc1SELYwqRWgHTckBaAhHQJYT09t/Fzd1fZQoaAZHQGUrewcHWz5oB03oA2gIR0CWFknwob4rdX2UKGgGR0Bwk9SeiBXkaAdNmwFoCEdAlhnFkhA4XHV9lChoBkdAcGqmO2iL22gHTdcCaAhHQJYgpI/Z/Td1fZQoaAZHQG/MiswL3K1oB03bAWgIR0CWIQVE/jbSdX2UKGgGR0Bu7vdqL0jDaAdNXgFoCEdAliEqzZ6D5HV9lChoBkdAcKNjmjj7ymgHTVABaAhHQJYhXuSfUWl1fZQoaAZHQHGbMQmNR3xoB02VAWgIR0CWJIyup0fYdX2UKGgGR0BwMzbqQiiZaAdNIwNoCEdAliSVGsmv4nV9lChoBkdAYtZoKUmlZWgHTegDaAhHQJYlSg/Tspp1fZQoaAZHQHE7ZaNdZ7poB01RA2gIR0CWJo1oQFs6dX2UKGgGR0Bt5gFgUlAvaAdNPANoCEdAligLFwT/Q3V9lChoBkdAcajYAsCkoGgHTWICaAhHQJYo54MWoFV1fZQoaAZHQGOF1XNke6toB03oA2gIR0CWQOchC+lCdX2UKGgGR0BwQxBQemvXaAdNPAJoCEdAlkHgLy+YdHV9lChoBkdAcl5+aScLB2gHTZcBaAhHQJZEjmuDBdl1fZQoaAZHQG4giTMaCMBoB03SAWgIR0CWR40jTrmhdX2UKGgGR0BzU3J1aGHpaAdNIwFoCEdAlkgB5X2du3V9lChoBkdAcYmmNipeeGgHTfoBaAhHQJZJ7o+wC8x1fZQoaAZHQHIAlanrIHVoB02NAWgIR0CWTQkiUxEfdX2UKGgGR0BnZXoNd7fIaAdN6ANoCEdAlk5pkkKNQ3V9lChoBkdAb9wrvLHMlmgHTUICaAhHQJZTexB3Roh1fZQoaAZHQGx/QPZqVQhoB01fAWgIR0CWVrF3IMjNdX2UKGgGR0BvjfvDxb0OaAdNmgFoCEdAllrOPq9oOHV9lChoBkdAcq52itaIN2gHTa8CaAhHQJZbO1fE4vN1fZQoaAZHQHLPa3mV7hNoB02yA2gIR0CWXFN21UlzdX2UKGgGR0BWs1v/BFd+aAdN6ANoCEdAlly09yLhrHV9lChoBkdAcHpc6vJRwmgHTS0BaAhHQJZc/i5uqFR1fZQoaAZHQHDoB8UmD15oB013AWgIR0CWXru0kWykdX2UKGgGR0Bj4JjriVB2aAdN6ANoCEdAlmE4ybhFVnV9lChoBkdAYJWJNTLntGgHTegDaAhHQJZnR+8XenB1fZQoaAZHQG0xOJ1q33JoB02AA2gIR0CWZ8sbedkKdX2UKGgGR0Bwzc5/9YOlaAdL+WgIR0CWaaabnX/YdX2UKGgGR0Bwgp9Aood/aAdN+AFoCEdAlmn7iVB2OnV9lChoBkdAYOV00WM0g2gHTegDaAhHQJZqkAKfFrF1fZQoaAZHQHJh7IcR15loB01uAmgIR0CWayw0O3DvdX2UKGgGR0BygwlfJFLGaAdNVAFoCEdAlm2lzZHuqnV9lChoBkdAcm/tGNJe3WgHTTYCaAhHQJZt2PXCj1x1fZQoaAZHQHB0xywOe8RoB01JAWgIR0CWb2cIqsltdX2UKGgGR0BtavEqDsdDaAdNKAFoCEdAlnBYjv/ipHV9lChoBkdAbvADmr8zh2gHTfUBaAhHQJZziW/rSmZ1fZQoaAZHQHBAiRSxZ+xoB02AA2gIR0CWdTPykKu0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efdc02b342ecad88e10d17204013ac194acb527f12fb866ceb0e39c8e05aaf65
|
3 |
+
size 146749
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ca826dac0d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ca826dac160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ca826dac1f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ca826dac280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ca826dac310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ca826dac3a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ca826dac430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ca826dac4c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ca826dac550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ca826dac5e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ca826dac670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ca826dac700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ca826d96d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690861098767453689,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK3ISj5Izcu8dMdGPNwg1brkaTa+5sykuwAAgD8AAIA/miDMPVy/WLqWBgE8RK24NRz+cDu+D6g0AACAPwAAAAAAlD8+NBbCvIDfgTxAoRW7hbQpvt3Q6LsAAIA/AACAPzPuXD2LdFU/w4gcPey9rr6zW5G7hbElvQAAAAAAAAAApsOKPUhng7rLjS44mhIgM0mZ4bqo9kq3AACAPwAAgD+A/E4+IKC0PvKwu71j4LK+Mw4kPf5vkDwAAAAAAAAAAEDt0j3DOTu6o/cWuuVfFjblPeY5cFQuOQAAgD8AAIA/ABD3uhSIiLrT3nk766DBNik1gzpDXpG6AACAPwAAgD+aoXM7XM94uj2dTLPXbTIvHTAYOzPyvTMAAIA/AACAPzMfZT1kPYw/VP0OPoxW875tYMk9vZtBPgAAAAAAAAAAzQY7veEApboGqXS5j5pztEjDfTpfe4w4AACAPwAAgD+ApZ29TmvNPc5vkz7SLUu+ZQmjPPiyCz0AAAAAAAAAAIBM1L3xkHM+tXJQPkwZjL6LaP887A4HugAAAAAAAAAAZv0RPUhBjrr685A2d0rSMOox+7r2D6a1AACAPwAAgD/aTow99pR9uqNJ+Da8Pfsx3pObulLpELYAAIA/AACAP8164D3DSzi8+hmqPe8OU75oykk845RyvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAQKz3RG+eMAWyUTckCjAF0lEdAlWe+8PFvRHV9lChoBkdAZNBHp8neBWgHTegDaAhHQJVn26oVEeB1fZQoaAZHQHA3ENKAavRoB02QAmgIR0CVaVpPRArydX2UKGgGR0BlQX3Dej20aAdN6ANoCEdAlW2Q6Mir1nV9lChoBkdAZankauOjqWgHTegDaAhHQJVt6ciGFi91fZQoaAZHQEr3AjY7JXBoB0vGaAhHQJVyUr4Fia11fZQoaAZHQHKP8qvvBrNoB00pAmgIR0CVc2/dIoVmdX2UKGgGR0Bhnk32mHgxaAdN6ANoCEdAlXv+uV5a/3V9lChoBkdAaLVa24NI9WgHTegDaAhHQJV9FEZzgdh1fZQoaAZHQGDMbQC0WuZoB03oA2gIR0CVgWitaIN3dX2UKGgGR0BxT1JmNBGAaAdNzAFoCEdAlYF7wOOKfnV9lChoBkdAb84+fywwCmgHTdQCaAhHQJWI4eGO+7F1fZQoaAZHQHF78gpz90loB02WA2gIR0CVieEjPfKqdX2UKGgGR0BkN5HRTjvNaAdN6ANoCEdAlZCpR4yGjHV9lChoBkdAchYQ9ic5KmgHTTsCaAhHQJWRgR6F/QV1fZQoaAZHQHJVQRChN/RoB033AWgIR0CVktF0xM37dX2UKGgGR0A5WNA1NxlyaAdL22gIR0CVlgo3Jgb7dX2UKGgGR0BoPaGzru6VaAdN6ANoCEdAlZYLQ5WBBnV9lChoBkdAb7Z/io86m2gHTbIDaAhHQJWW0SQHRkV1fZQoaAZHQEb7rrPdEb5oB0vLaAhHQJWgtxFRYRx1fZQoaAZHQGXwJxvNu+BoB03oA2gIR0CVsq+hGpdbdX2UKGgGR0BtC38O09haaAdNEQFoCEdAlbMB59mYjXV9lChoBkdAYgbAcDKYA2gHTegDaAhHQJW009SuQp51fZQoaAZHQF6WPCl7+kxoB03oA2gIR0CVtvGOuJUHdX2UKGgGR0BwixSCOFQEaAdNYwFoCEdAlbcZ9y925nV9lChoBkdAcCrRbKRuCWgHTYQBaAhHQJW4Q4ecQRR1fZQoaAZHQGXWHHeaa1FoB03oA2gIR0CVu6y2hIvrdX2UKGgGR0BveHmgam4zaAdNeQFoCEdAlbyu40/GEXV9lChoBkdAcIfpx3mmtWgHTQgDaAhHQJW/F+WnjyZ1fZQoaAZHQGYM0hV2icpoB03oA2gIR0CVwAnDziCKdX2UKGgGR0BypR0jkdWAaAdNnANoCEdAlcWhNRFZxXV9lChoBkdAcTdlnh86WGgHTUABaAhHQJXF5bPhQ3x1fZQoaAZHQGJUioKlYU5oB03oA2gIR0CVxj+NcW0rdX2UKGgGR0BhrhA8jiXIaAdN6ANoCEdAlcbDCDVYp3V9lChoBkdAcQcIVdonKGgHTR4BaAhHQJXH7iQ1aW51fZQoaAZHQGa1FF+d9UloB03oA2gIR0CVzU0cfeUIdX2UKGgGR0Bw3vUDuBtlaAdNTAFoCEdAlc11Z5iVjnV9lChoBkdAcW5NN8E3bWgHTYkBaAhHQJXNmxD9fkZ1fZQoaAZHQG8qWhysCDFoB01DAmgIR0CVzpeFtbcHdX2UKGgGR0Bxvrmgam4zaAdNWAJoCEdAlc8CjgydnXV9lChoBkdAcH8KdQO4G2gHTS4DaAhHQJXQBfShJy11fZQoaAZHQHModt65XltoB03zAWgIR0CV1dSkTHsDdX2UKGgGR0BxoT0e2d/baAdN+AJoCEdAldmtAX2ugnV9lChoBkdAYPznnMdLhGgHTegDaAhHQJXlefthNM51fZQoaAZHQHFjXDJlrdpoB01+AWgIR0CV5ZLRKHwgdX2UKGgGR0Bxx2NWEK3NaAdNvwFoCEdAleXOd9Ujs3V9lChoBkdAYGbGACnxa2gHTegDaAhHQJX585n13+x1fZQoaAZHQHDOTxLCemNoB02tAmgIR0CV+9Hggow3dX2UKGgGR0Bxql+AmReUaAdNhAJoCEdAlfw7+5vtMXV9lChoBkdAY7Gv+wTufGgHTegDaAhHQJX8oMAmzB11fZQoaAZHQHBwAZ0jkdVoB012AmgIR0CWA9U6gdwOdX2UKGgGR0BwaOol2NedaAdNAAJoCEdAlgWSEDhcaHV9lChoBkdAcZlIEKVpsWgHTeYCaAhHQJYH0XyiEg51fZQoaAZHQG6Q0uUUwi9oB02nA2gIR0CWCBJBgNPQdX2UKGgGR0Bn/axC6YmcaAdN6ANoCEdAlgwdMj/uLXV9lChoBkdAYTa46wMYuWgHTegDaAhHQJYMzbfxc3V1fZQoaAZHQG1tkTQE6ktoB012AWgIR0CWDQ8DB/I9dX2UKGgGR0BwLx8zAN5MaAdNxANoCEdAlhLpr1uivnV9lChoBkdAc1SELYwqRWgHTckBaAhHQJYT09t/Fzd1fZQoaAZHQGUrewcHWz5oB03oA2gIR0CWFknwob4rdX2UKGgGR0Bwk9SeiBXkaAdNmwFoCEdAlhnFkhA4XHV9lChoBkdAcGqmO2iL22gHTdcCaAhHQJYgpI/Z/Td1fZQoaAZHQG/MiswL3K1oB03bAWgIR0CWIQVE/jbSdX2UKGgGR0Bu7vdqL0jDaAdNXgFoCEdAliEqzZ6D5HV9lChoBkdAcKNjmjj7ymgHTVABaAhHQJYhXuSfUWl1fZQoaAZHQHGbMQmNR3xoB02VAWgIR0CWJIyup0fYdX2UKGgGR0BwMzbqQiiZaAdNIwNoCEdAliSVGsmv4nV9lChoBkdAYtZoKUmlZWgHTegDaAhHQJYlSg/Tspp1fZQoaAZHQHE7ZaNdZ7poB01RA2gIR0CWJo1oQFs6dX2UKGgGR0Bt5gFgUlAvaAdNPANoCEdAligLFwT/Q3V9lChoBkdAcajYAsCkoGgHTWICaAhHQJYo54MWoFV1fZQoaAZHQGOF1XNke6toB03oA2gIR0CWQOchC+lCdX2UKGgGR0BwQxBQemvXaAdNPAJoCEdAlkHgLy+YdHV9lChoBkdAcl5+aScLB2gHTZcBaAhHQJZEjmuDBdl1fZQoaAZHQG4giTMaCMBoB03SAWgIR0CWR40jTrmhdX2UKGgGR0BzU3J1aGHpaAdNIwFoCEdAlkgB5X2du3V9lChoBkdAcYmmNipeeGgHTfoBaAhHQJZJ7o+wC8x1fZQoaAZHQHIAlanrIHVoB02NAWgIR0CWTQkiUxEfdX2UKGgGR0BnZXoNd7fIaAdN6ANoCEdAlk5pkkKNQ3V9lChoBkdAb9wrvLHMlmgHTUICaAhHQJZTexB3Roh1fZQoaAZHQGx/QPZqVQhoB01fAWgIR0CWVrF3IMjNdX2UKGgGR0BvjfvDxb0OaAdNmgFoCEdAllrOPq9oOHV9lChoBkdAcq52itaIN2gHTa8CaAhHQJZbO1fE4vN1fZQoaAZHQHLPa3mV7hNoB02yA2gIR0CWXFN21UlzdX2UKGgGR0BWs1v/BFd+aAdN6ANoCEdAlly09yLhrHV9lChoBkdAcHpc6vJRwmgHTS0BaAhHQJZc/i5uqFR1fZQoaAZHQHDoB8UmD15oB013AWgIR0CWXru0kWykdX2UKGgGR0Bj4JjriVB2aAdN6ANoCEdAlmE4ybhFVnV9lChoBkdAYJWJNTLntGgHTegDaAhHQJZnR+8XenB1fZQoaAZHQG0xOJ1q33JoB02AA2gIR0CWZ8sbedkKdX2UKGgGR0Bwzc5/9YOlaAdL+WgIR0CWaaabnX/YdX2UKGgGR0Bwgp9Aood/aAdN+AFoCEdAlmn7iVB2OnV9lChoBkdAYOV00WM0g2gHTegDaAhHQJZqkAKfFrF1fZQoaAZHQHJh7IcR15loB01uAmgIR0CWayw0O3DvdX2UKGgGR0BygwlfJFLGaAdNVAFoCEdAlm2lzZHuqnV9lChoBkdAcm/tGNJe3WgHTTYCaAhHQJZt2PXCj1x1fZQoaAZHQHB0xywOe8RoB01JAWgIR0CWb2cIqsltdX2UKGgGR0BtavEqDsdDaAdNKAFoCEdAlnBYjv/ipHV9lChoBkdAbvADmr8zh2gHTfUBaAhHQJZziW/rSmZ1fZQoaAZHQHBAiRSxZ+xoB02AA2gIR0CWdTPykKu0dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9faecfe057e6863388578cb798213bfa63daae457291b3723c9ba39c91818ab8
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:128d3043027f5d1199b952493996bd7db6c0cf06430d9aa30fa9ca3ba6ada423
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.3502970936817, "std_reward": 13.494862131117374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-01T04:24:16.694702"}
|