cleanup diffusion
Browse files- Modules/diffusion/diffusion.py +0 -9
- Modules/diffusion/sampler.py +21 -490
- Utils/text_utils.py +2 -1
Modules/diffusion/diffusion.py
CHANGED
@@ -54,15 +54,6 @@ def get_default_model_kwargs():
|
|
54 |
def get_default_sampling_kwargs():
|
55 |
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
|
56 |
|
57 |
-
|
58 |
-
class AudioDiffusionModel(Model1d):
|
59 |
-
def __init__(self, **kwargs):
|
60 |
-
super().__init__(**{**get_default_model_kwargs(), **kwargs})
|
61 |
-
|
62 |
-
def sample(self, *args, **kwargs):
|
63 |
-
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
|
64 |
-
|
65 |
-
|
66 |
class AudioDiffusionConditional(Model1d):
|
67 |
def __init__(
|
68 |
self,
|
|
|
54 |
def get_default_sampling_kwargs():
|
55 |
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
class AudioDiffusionConditional(Model1d):
|
58 |
def __init__(
|
59 |
self,
|
Modules/diffusion/sampler.py
CHANGED
@@ -1,27 +1,14 @@
|
|
1 |
from math import atan, cos, pi, sin, sqrt
|
2 |
from typing import Any, Callable, List, Optional, Tuple, Type
|
3 |
-
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.nn.functional as F
|
7 |
-
from einops import rearrange
|
8 |
from torch import Tensor
|
9 |
-
|
10 |
from .utils import *
|
11 |
|
12 |
-
"""
|
13 |
-
Diffusion Training
|
14 |
-
"""
|
15 |
-
|
16 |
-
""" Distributions """
|
17 |
-
|
18 |
-
|
19 |
-
class Distribution:
|
20 |
-
def __call__(self, num_samples: int, device: torch.device):
|
21 |
-
raise NotImplementedError()
|
22 |
-
|
23 |
|
24 |
-
class LogNormalDistribution(
|
25 |
def __init__(self, mean: float, std: float):
|
26 |
self.mean = mean
|
27 |
self.std = std
|
@@ -33,55 +20,11 @@ class LogNormalDistribution(Distribution):
|
|
33 |
return normal.exp()
|
34 |
|
35 |
|
36 |
-
class UniformDistribution(
|
37 |
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
38 |
return torch.rand(num_samples, device=device)
|
39 |
|
40 |
|
41 |
-
class VKDistribution(Distribution):
|
42 |
-
def __init__(
|
43 |
-
self,
|
44 |
-
min_value: float = 0.0,
|
45 |
-
max_value: float = float("inf"),
|
46 |
-
sigma_data: float = 1.0,
|
47 |
-
):
|
48 |
-
self.min_value = min_value
|
49 |
-
self.max_value = max_value
|
50 |
-
self.sigma_data = sigma_data
|
51 |
-
|
52 |
-
def __call__(
|
53 |
-
self, num_samples: int, device: torch.device = torch.device("cpu")
|
54 |
-
) -> Tensor:
|
55 |
-
sigma_data = self.sigma_data
|
56 |
-
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
|
57 |
-
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
|
58 |
-
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
|
59 |
-
return torch.tan(u * pi / 2) * sigma_data
|
60 |
-
|
61 |
-
|
62 |
-
""" Diffusion Classes """
|
63 |
-
|
64 |
-
|
65 |
-
def pad_dims(x: Tensor, ndim: int) -> Tensor:
|
66 |
-
# Pads additional ndims to the right of the tensor
|
67 |
-
return x.view(*x.shape, *((1,) * ndim))
|
68 |
-
|
69 |
-
|
70 |
-
def clip(x: Tensor, dynamic_threshold: float = 0.0):
|
71 |
-
if dynamic_threshold == 0.0:
|
72 |
-
return x.clamp(-1.0, 1.0)
|
73 |
-
else:
|
74 |
-
# Dynamic thresholding
|
75 |
-
# Find dynamic threshold quantile for each batch
|
76 |
-
x_flat = rearrange(x, "b ... -> b (...)")
|
77 |
-
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
|
78 |
-
# Clamp to a min of 1.0
|
79 |
-
scale.clamp_(min=1.0)
|
80 |
-
# Clamp all values and scale
|
81 |
-
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
|
82 |
-
x = x.clamp(-scale, scale) / scale
|
83 |
-
return x
|
84 |
-
|
85 |
|
86 |
def to_batch(
|
87 |
batch_size: int,
|
@@ -96,73 +39,7 @@ def to_batch(
|
|
96 |
assert exists(xs)
|
97 |
return xs
|
98 |
|
99 |
-
|
100 |
-
class Diffusion(nn.Module):
|
101 |
-
|
102 |
-
alias: str = ""
|
103 |
-
|
104 |
-
"""Base diffusion class"""
|
105 |
-
|
106 |
-
def denoise_fn(
|
107 |
-
self,
|
108 |
-
x_noisy: Tensor,
|
109 |
-
sigmas: Optional[Tensor] = None,
|
110 |
-
sigma: Optional[float] = None,
|
111 |
-
**kwargs,
|
112 |
-
) -> Tensor:
|
113 |
-
raise NotImplementedError("Diffusion class missing denoise_fn")
|
114 |
-
|
115 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
116 |
-
raise NotImplementedError("Diffusion class missing forward function")
|
117 |
-
|
118 |
-
|
119 |
-
class VDiffusion(Diffusion):
|
120 |
-
|
121 |
-
alias = "v"
|
122 |
-
|
123 |
-
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
124 |
-
super().__init__()
|
125 |
-
self.net = net
|
126 |
-
self.sigma_distribution = sigma_distribution
|
127 |
-
|
128 |
-
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
|
129 |
-
angle = sigmas * pi / 2
|
130 |
-
alpha = torch.cos(angle)
|
131 |
-
beta = torch.sin(angle)
|
132 |
-
return alpha, beta
|
133 |
-
|
134 |
-
def denoise_fn(
|
135 |
-
self,
|
136 |
-
x_noisy: Tensor,
|
137 |
-
sigmas: Optional[Tensor] = None,
|
138 |
-
sigma: Optional[float] = None,
|
139 |
-
**kwargs,
|
140 |
-
) -> Tensor:
|
141 |
-
batch_size, device = x_noisy.shape[0], x_noisy.device
|
142 |
-
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
143 |
-
return self.net(x_noisy, sigmas, **kwargs)
|
144 |
-
|
145 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
146 |
-
batch_size, device = x.shape[0], x.device
|
147 |
-
|
148 |
-
# Sample amount of noise to add for each batch element
|
149 |
-
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
150 |
-
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
151 |
-
|
152 |
-
# Get noise
|
153 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
154 |
-
|
155 |
-
# Combine input and noise weighted by half-circle
|
156 |
-
alpha, beta = self.get_alpha_beta(sigmas_padded)
|
157 |
-
x_noisy = x * alpha + noise * beta
|
158 |
-
x_target = noise * alpha - x * beta
|
159 |
-
|
160 |
-
# Denoise and return loss
|
161 |
-
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
|
162 |
-
return F.mse_loss(x_denoised, x_target)
|
163 |
-
|
164 |
-
|
165 |
-
class KDiffusion(Diffusion):
|
166 |
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
167 |
|
168 |
alias = "k"
|
@@ -171,7 +48,7 @@ class KDiffusion(Diffusion):
|
|
171 |
self,
|
172 |
net: nn.Module,
|
173 |
*,
|
174 |
-
sigma_distribution
|
175 |
sigma_data: float, # data distribution standard deviation
|
176 |
dynamic_threshold: float = 0.0,
|
177 |
):
|
@@ -196,127 +73,32 @@ class KDiffusion(Diffusion):
|
|
196 |
sigmas: Optional[Tensor] = None,
|
197 |
sigma: Optional[float] = None,
|
198 |
**kwargs,
|
199 |
-
)
|
|
|
200 |
batch_size, device = x_noisy.shape[0], x_noisy.device
|
201 |
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
202 |
|
203 |
# Predict network output and add skip connection
|
|
|
204 |
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
205 |
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
206 |
x_denoised = c_skip * x_noisy + c_out * x_pred
|
207 |
|
208 |
return x_denoised
|
209 |
|
210 |
-
def loss_weight(self, sigmas: Tensor) -> Tensor:
|
211 |
-
# Computes weight depending on data distribution
|
212 |
-
return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
|
213 |
-
|
214 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
215 |
-
batch_size, device = x.shape[0], x.device
|
216 |
-
from einops import rearrange, reduce
|
217 |
-
|
218 |
-
# Sample amount of noise to add for each batch element
|
219 |
-
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
220 |
-
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
221 |
-
|
222 |
-
# Add noise to input
|
223 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
224 |
-
x_noisy = x + sigmas_padded * noise
|
225 |
-
|
226 |
-
# Compute denoised values
|
227 |
-
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
|
228 |
-
|
229 |
-
# Compute weighted loss
|
230 |
-
losses = F.mse_loss(x_denoised, x, reduction="none")
|
231 |
-
losses = reduce(losses, "b ... -> b", "mean")
|
232 |
-
losses = losses * self.loss_weight(sigmas)
|
233 |
-
loss = losses.mean()
|
234 |
-
return loss
|
235 |
-
|
236 |
-
|
237 |
-
class VKDiffusion(Diffusion):
|
238 |
-
|
239 |
-
alias = "vk"
|
240 |
-
|
241 |
-
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
242 |
-
super().__init__()
|
243 |
-
self.net = net
|
244 |
-
self.sigma_distribution = sigma_distribution
|
245 |
-
|
246 |
-
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
247 |
-
sigma_data = 1.0
|
248 |
-
sigmas = rearrange(sigmas, "b -> b 1 1")
|
249 |
-
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
250 |
-
c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
251 |
-
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
252 |
-
return c_skip, c_out, c_in
|
253 |
-
|
254 |
-
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
|
255 |
-
return sigmas.atan() / pi * 2
|
256 |
-
|
257 |
-
def t_to_sigma(self, t: Tensor) -> Tensor:
|
258 |
-
return (t * pi / 2).tan()
|
259 |
-
|
260 |
-
def denoise_fn(
|
261 |
-
self,
|
262 |
-
x_noisy: Tensor,
|
263 |
-
sigmas: Optional[Tensor] = None,
|
264 |
-
sigma: Optional[float] = None,
|
265 |
-
**kwargs,
|
266 |
-
) -> Tensor:
|
267 |
-
batch_size, device = x_noisy.shape[0], x_noisy.device
|
268 |
-
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
269 |
-
|
270 |
-
# Predict network output and add skip connection
|
271 |
-
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
272 |
-
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
273 |
-
x_denoised = c_skip * x_noisy + c_out * x_pred
|
274 |
-
return x_denoised
|
275 |
-
|
276 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
277 |
-
batch_size, device = x.shape[0], x.device
|
278 |
|
279 |
-
# Sample amount of noise to add for each batch element
|
280 |
-
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
281 |
-
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
282 |
|
283 |
-
# Add noise to input
|
284 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
285 |
-
x_noisy = x + sigmas_padded * noise
|
286 |
|
287 |
-
# Compute model output
|
288 |
-
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
289 |
-
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
290 |
|
291 |
-
# Compute v-objective target
|
292 |
-
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
|
293 |
|
294 |
-
# Compute loss
|
295 |
-
loss = F.mse_loss(x_pred, v_target)
|
296 |
-
return loss
|
297 |
|
298 |
|
299 |
-
"""
|
300 |
-
Diffusion Sampling
|
301 |
-
"""
|
302 |
|
303 |
-
""" Schedules """
|
304 |
|
305 |
|
306 |
-
class Schedule(nn.Module):
|
307 |
-
"""Interface used by different sampling schedules"""
|
308 |
-
|
309 |
-
def forward(self, num_steps: int, device: torch.device) -> Tensor:
|
310 |
-
raise NotImplementedError()
|
311 |
|
312 |
|
313 |
-
class
|
314 |
-
def forward(self, num_steps: int, device: Any) -> Tensor:
|
315 |
-
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
|
316 |
-
return sigmas
|
317 |
-
|
318 |
-
|
319 |
-
class KarrasSchedule(Schedule):
|
320 |
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
321 |
|
322 |
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
@@ -342,7 +124,7 @@ class KarrasSchedule(Schedule):
|
|
342 |
|
343 |
class Sampler(nn.Module):
|
344 |
|
345 |
-
|
346 |
|
347 |
def forward(
|
348 |
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
@@ -361,127 +143,10 @@ class Sampler(nn.Module):
|
|
361 |
raise NotImplementedError("Inpainting not available with current sampler")
|
362 |
|
363 |
|
364 |
-
class VSampler(Sampler):
|
365 |
-
|
366 |
-
diffusion_types = [VDiffusion]
|
367 |
-
|
368 |
-
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
|
369 |
-
angle = sigma * pi / 2
|
370 |
-
alpha = cos(angle)
|
371 |
-
beta = sin(angle)
|
372 |
-
return alpha, beta
|
373 |
-
|
374 |
-
def forward(
|
375 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
376 |
-
) -> Tensor:
|
377 |
-
x = sigmas[0] * noise
|
378 |
-
alpha, beta = self.get_alpha_beta(sigmas[0].item())
|
379 |
-
|
380 |
-
for i in range(num_steps - 1):
|
381 |
-
is_last = i == num_steps - 1
|
382 |
-
|
383 |
-
x_denoised = fn(x, sigma=sigmas[i])
|
384 |
-
x_pred = x * alpha - x_denoised * beta
|
385 |
-
x_eps = x * beta + x_denoised * alpha
|
386 |
-
|
387 |
-
if not is_last:
|
388 |
-
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
|
389 |
-
x = x_pred * alpha + x_eps * beta
|
390 |
-
|
391 |
-
return x_pred
|
392 |
-
|
393 |
-
|
394 |
-
class KarrasSampler(Sampler):
|
395 |
-
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
|
396 |
-
|
397 |
-
diffusion_types = [KDiffusion, VKDiffusion]
|
398 |
-
|
399 |
-
def __init__(
|
400 |
-
self,
|
401 |
-
s_tmin: float = 0,
|
402 |
-
s_tmax: float = float("inf"),
|
403 |
-
s_churn: float = 0.0,
|
404 |
-
s_noise: float = 1.0,
|
405 |
-
):
|
406 |
-
super().__init__()
|
407 |
-
self.s_tmin = s_tmin
|
408 |
-
self.s_tmax = s_tmax
|
409 |
-
self.s_noise = s_noise
|
410 |
-
self.s_churn = s_churn
|
411 |
-
|
412 |
-
def step(
|
413 |
-
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
|
414 |
-
) -> Tensor:
|
415 |
-
"""Algorithm 2 (step)"""
|
416 |
-
# Select temporarily increased noise level
|
417 |
-
sigma_hat = sigma + gamma * sigma
|
418 |
-
# Add noise to move from sigma to sigma_hat
|
419 |
-
epsilon = self.s_noise * torch.randn_like(x)
|
420 |
-
x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
|
421 |
-
# Evaluate ∂x/∂sigma at sigma_hat
|
422 |
-
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
|
423 |
-
# Take euler step from sigma_hat to sigma_next
|
424 |
-
x_next = x_hat + (sigma_next - sigma_hat) * d
|
425 |
-
# Second order correction
|
426 |
-
if sigma_next != 0:
|
427 |
-
model_out_next = fn(x_next, sigma=sigma_next)
|
428 |
-
d_prime = (x_next - model_out_next) / sigma_next
|
429 |
-
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
|
430 |
-
return x_next
|
431 |
-
|
432 |
-
def forward(
|
433 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
434 |
-
) -> Tensor:
|
435 |
-
x = sigmas[0] * noise
|
436 |
-
# Compute gammas
|
437 |
-
gammas = torch.where(
|
438 |
-
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
|
439 |
-
min(self.s_churn / num_steps, sqrt(2) - 1),
|
440 |
-
0.0,
|
441 |
-
)
|
442 |
-
# Denoise to sample
|
443 |
-
for i in range(num_steps - 1):
|
444 |
-
x = self.step(
|
445 |
-
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
|
446 |
-
)
|
447 |
-
|
448 |
-
return x
|
449 |
-
|
450 |
-
|
451 |
-
class AEulerSampler(Sampler):
|
452 |
-
|
453 |
-
diffusion_types = [KDiffusion, VKDiffusion]
|
454 |
-
|
455 |
-
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
|
456 |
-
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
457 |
-
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
458 |
-
return sigma_up, sigma_down
|
459 |
-
|
460 |
-
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
461 |
-
# Sigma steps
|
462 |
-
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
|
463 |
-
# Derivative at sigma (∂x/∂sigma)
|
464 |
-
d = (x - fn(x, sigma=sigma)) / sigma
|
465 |
-
# Euler method
|
466 |
-
x_next = x + d * (sigma_down - sigma)
|
467 |
-
# Add randomness
|
468 |
-
x_next = x_next + torch.randn_like(x) * sigma_up
|
469 |
-
return x_next
|
470 |
-
|
471 |
-
def forward(
|
472 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
473 |
-
) -> Tensor:
|
474 |
-
x = sigmas[0] * noise
|
475 |
-
# Denoise to sample
|
476 |
-
for i in range(num_steps - 1):
|
477 |
-
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
478 |
-
return x
|
479 |
-
|
480 |
-
|
481 |
class ADPM2Sampler(Sampler):
|
482 |
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
483 |
|
484 |
-
diffusion_types = [KDiffusion, VKDiffusion]
|
485 |
|
486 |
def __init__(self, rho: float = 1.0):
|
487 |
super().__init__()
|
@@ -510,52 +175,23 @@ class ADPM2Sampler(Sampler):
|
|
510 |
return x_next
|
511 |
|
512 |
def forward(
|
513 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
514 |
-
|
515 |
x = sigmas[0] * noise
|
516 |
# Denoise to sample
|
517 |
for i in range(num_steps - 1):
|
518 |
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
519 |
return x
|
520 |
|
521 |
-
def inpaint(
|
522 |
-
self,
|
523 |
-
source: Tensor,
|
524 |
-
mask: Tensor,
|
525 |
-
fn: Callable,
|
526 |
-
sigmas: Tensor,
|
527 |
-
num_steps: int,
|
528 |
-
num_resamples: int,
|
529 |
-
) -> Tensor:
|
530 |
-
x = sigmas[0] * torch.randn_like(source)
|
531 |
-
|
532 |
-
for i in range(num_steps - 1):
|
533 |
-
# Noise source to current noise level
|
534 |
-
source_noisy = source + sigmas[i] * torch.randn_like(source)
|
535 |
-
for r in range(num_resamples):
|
536 |
-
# Merge noisy source and current then denoise
|
537 |
-
x = source_noisy * mask + x * ~mask
|
538 |
-
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
539 |
-
# Renoise if not last resample step
|
540 |
-
if r < num_resamples - 1:
|
541 |
-
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
|
542 |
-
x = x + sigma * torch.randn_like(x)
|
543 |
-
|
544 |
-
return source * mask + x * ~mask
|
545 |
-
|
546 |
-
|
547 |
-
""" Main Classes """
|
548 |
-
|
549 |
-
|
550 |
class DiffusionSampler(nn.Module):
|
551 |
def __init__(
|
552 |
self,
|
553 |
-
diffusion
|
554 |
*,
|
555 |
-
sampler
|
556 |
-
sigma_schedule
|
557 |
-
num_steps
|
558 |
-
clamp
|
559 |
):
|
560 |
super().__init__()
|
561 |
self.denoise_fn = diffusion.denoise_fn
|
@@ -571,8 +207,8 @@ class DiffusionSampler(nn.Module):
|
|
571 |
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
572 |
|
573 |
def forward(
|
574 |
-
self, noise
|
575 |
-
|
576 |
device = noise.device
|
577 |
num_steps = default(num_steps, self.num_steps) # type: ignore
|
578 |
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
@@ -583,109 +219,4 @@ class DiffusionSampler(nn.Module):
|
|
583 |
# Sample using sampler
|
584 |
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
585 |
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
586 |
-
return x
|
587 |
-
|
588 |
-
|
589 |
-
class DiffusionInpainter(nn.Module):
|
590 |
-
def __init__(
|
591 |
-
self,
|
592 |
-
diffusion: Diffusion,
|
593 |
-
*,
|
594 |
-
num_steps: int,
|
595 |
-
num_resamples: int,
|
596 |
-
sampler: Sampler,
|
597 |
-
sigma_schedule: Schedule,
|
598 |
-
):
|
599 |
-
super().__init__()
|
600 |
-
self.denoise_fn = diffusion.denoise_fn
|
601 |
-
self.num_steps = num_steps
|
602 |
-
self.num_resamples = num_resamples
|
603 |
-
self.inpaint_fn = sampler.inpaint
|
604 |
-
self.sigma_schedule = sigma_schedule
|
605 |
-
|
606 |
-
@torch.no_grad()
|
607 |
-
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
|
608 |
-
x = self.inpaint_fn(
|
609 |
-
source=inpaint,
|
610 |
-
mask=inpaint_mask,
|
611 |
-
fn=self.denoise_fn,
|
612 |
-
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
|
613 |
-
num_steps=self.num_steps,
|
614 |
-
num_resamples=self.num_resamples,
|
615 |
-
)
|
616 |
-
return x
|
617 |
-
|
618 |
-
|
619 |
-
def sequential_mask(like: Tensor, start: int) -> Tensor:
|
620 |
-
length, device = like.shape[2], like.device
|
621 |
-
mask = torch.ones_like(like, dtype=torch.bool)
|
622 |
-
mask[:, :, start:] = torch.zeros((length - start,), device=device)
|
623 |
-
return mask
|
624 |
-
|
625 |
-
|
626 |
-
class SpanBySpanComposer(nn.Module):
|
627 |
-
def __init__(
|
628 |
-
self,
|
629 |
-
inpainter: DiffusionInpainter,
|
630 |
-
*,
|
631 |
-
num_spans: int,
|
632 |
-
):
|
633 |
-
super().__init__()
|
634 |
-
self.inpainter = inpainter
|
635 |
-
self.num_spans = num_spans
|
636 |
-
|
637 |
-
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
|
638 |
-
half_length = start.shape[2] // 2
|
639 |
-
|
640 |
-
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
|
641 |
-
# Inpaint second half from first half
|
642 |
-
inpaint = torch.zeros_like(start)
|
643 |
-
inpaint[:, :, :half_length] = start[:, :, half_length:]
|
644 |
-
inpaint_mask = sequential_mask(like=start, start=half_length)
|
645 |
-
|
646 |
-
for i in range(self.num_spans):
|
647 |
-
# Inpaint second half
|
648 |
-
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
|
649 |
-
# Replace first half with generated second half
|
650 |
-
second_half = span[:, :, half_length:]
|
651 |
-
inpaint[:, :, :half_length] = second_half
|
652 |
-
# Save generated span
|
653 |
-
spans.append(second_half)
|
654 |
-
|
655 |
-
return torch.cat(spans, dim=2)
|
656 |
-
|
657 |
-
|
658 |
-
class XDiffusion(nn.Module):
|
659 |
-
def __init__(self, type: str, net: nn.Module, **kwargs):
|
660 |
-
super().__init__()
|
661 |
-
|
662 |
-
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
|
663 |
-
aliases = [t.alias for t in diffusion_classes] # type: ignore
|
664 |
-
message = f"type='{type}' must be one of {*aliases,}"
|
665 |
-
assert type in aliases, message
|
666 |
-
self.net = net
|
667 |
-
|
668 |
-
for XDiffusion in diffusion_classes:
|
669 |
-
if XDiffusion.alias == type: # type: ignore
|
670 |
-
self.diffusion = XDiffusion(net=net, **kwargs)
|
671 |
-
|
672 |
-
def forward(self, *args, **kwargs) -> Tensor:
|
673 |
-
return self.diffusion(*args, **kwargs)
|
674 |
-
|
675 |
-
def sample(
|
676 |
-
self,
|
677 |
-
noise: Tensor,
|
678 |
-
num_steps: int,
|
679 |
-
sigma_schedule: Schedule,
|
680 |
-
sampler: Sampler,
|
681 |
-
clamp: bool,
|
682 |
-
**kwargs,
|
683 |
-
) -> Tensor:
|
684 |
-
diffusion_sampler = DiffusionSampler(
|
685 |
-
diffusion=self.diffusion,
|
686 |
-
sampler=sampler,
|
687 |
-
sigma_schedule=sigma_schedule,
|
688 |
-
num_steps=num_steps,
|
689 |
-
clamp=clamp,
|
690 |
-
)
|
691 |
-
return diffusion_sampler(noise, **kwargs)
|
|
|
1 |
from math import atan, cos, pi, sin, sqrt
|
2 |
from typing import Any, Callable, List, Optional, Tuple, Type
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
from torch import Tensor
|
|
|
8 |
from .utils import *
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
class LogNormalDistribution():
|
12 |
def __init__(self, mean: float, std: float):
|
13 |
self.mean = mean
|
14 |
self.std = std
|
|
|
20 |
return normal.exp()
|
21 |
|
22 |
|
23 |
+
class UniformDistribution():
|
24 |
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
25 |
return torch.rand(num_samples, device=device)
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def to_batch(
|
30 |
batch_size: int,
|
|
|
39 |
assert exists(xs)
|
40 |
return xs
|
41 |
|
42 |
+
class KDiffusion(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
44 |
|
45 |
alias = "k"
|
|
|
48 |
self,
|
49 |
net: nn.Module,
|
50 |
*,
|
51 |
+
sigma_distribution,
|
52 |
sigma_data: float, # data distribution standard deviation
|
53 |
dynamic_threshold: float = 0.0,
|
54 |
):
|
|
|
73 |
sigmas: Optional[Tensor] = None,
|
74 |
sigma: Optional[float] = None,
|
75 |
**kwargs,
|
76 |
+
):
|
77 |
+
# raise ValueError
|
78 |
batch_size, device = x_noisy.shape[0], x_noisy.device
|
79 |
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
80 |
|
81 |
# Predict network output and add skip connection
|
82 |
+
# print('\n\n\n\n', kwargs, '\nKWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWAr\n\n\n\n') 'embedding tensor'
|
83 |
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
84 |
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
85 |
x_denoised = c_skip * x_noisy + c_out * x_pred
|
86 |
|
87 |
return x_denoised
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
90 |
|
|
|
|
|
|
|
91 |
|
|
|
|
|
|
|
92 |
|
|
|
|
|
93 |
|
|
|
|
|
|
|
94 |
|
95 |
|
|
|
|
|
|
|
96 |
|
|
|
97 |
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
+
class KarrasSchedule(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
103 |
|
104 |
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
|
|
124 |
|
125 |
class Sampler(nn.Module):
|
126 |
|
127 |
+
|
128 |
|
129 |
def forward(
|
130 |
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
|
|
143 |
raise NotImplementedError("Inpainting not available with current sampler")
|
144 |
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
class ADPM2Sampler(Sampler):
|
147 |
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
148 |
|
149 |
+
diffusion_types = [KDiffusion,] # VKDiffusion]
|
150 |
|
151 |
def __init__(self, rho: float = 1.0):
|
152 |
super().__init__()
|
|
|
175 |
return x_next
|
176 |
|
177 |
def forward(
|
178 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int):
|
179 |
+
# raise ValueError
|
180 |
x = sigmas[0] * noise
|
181 |
# Denoise to sample
|
182 |
for i in range(num_steps - 1):
|
183 |
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
184 |
return x
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
class DiffusionSampler(nn.Module):
|
187 |
def __init__(
|
188 |
self,
|
189 |
+
diffusion,
|
190 |
*,
|
191 |
+
sampler,
|
192 |
+
sigma_schedule,
|
193 |
+
num_steps=None,
|
194 |
+
clamp=True,
|
195 |
):
|
196 |
super().__init__()
|
197 |
self.denoise_fn = diffusion.denoise_fn
|
|
|
207 |
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
208 |
|
209 |
def forward(
|
210 |
+
self, noise, num_steps=None, **kwargs):
|
211 |
+
# raise ValueError
|
212 |
device = noise.device
|
213 |
num_steps = default(num_steps, self.num_steps) # type: ignore
|
214 |
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
|
|
219 |
# Sample using sampler
|
220 |
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
221 |
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
222 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/text_utils.py
CHANGED
@@ -84,7 +84,8 @@ def split_into_sentences(text):
|
|
84 |
sentences = [s.strip() for s in sentences]
|
85 |
|
86 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes
|
87 |
-
|
|
|
88 |
|
89 |
if sentences and not sentences[-1]: sentences = sentences[:-1]
|
90 |
return sentences
|
|
|
84 |
sentences = [s.strip() for s in sentences]
|
85 |
|
86 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes
|
87 |
+
# -- even 400 phonemes sometimes OOM in cuda:4
|
88 |
+
sentences = [sub_sent+' ' for s in sentences for sub_sent in textwrap.wrap(s, 300, break_long_words=0)]
|
89 |
|
90 |
if sentences and not sentences[-1]: sentences = sentences[:-1]
|
91 |
return sentences
|