Initial commit
Browse files- .gitattributes +1 -0
- README.md +84 -0
- args.yml +83 -0
- config.yml +27 -0
- dqn-Acrobot-v1.zip +3 -0
- dqn-Acrobot-v1/_stable_baselines3_version +1 -0
- dqn-Acrobot-v1/data +128 -0
- dqn-Acrobot-v1/policy.optimizer.pth +3 -0
- dqn-Acrobot-v1/policy.pth +3 -0
- dqn-Acrobot-v1/pytorch_variables.pth +3 -0
- dqn-Acrobot-v1/system_info.txt +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Acrobot-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Acrobot-v1
|
16 |
+
type: Acrobot-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **Acrobot-v1**
|
25 |
+
This is a trained model of a **DQN** agent playing **Acrobot-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga dlantonia -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga dlantonia -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo dqn --env Acrobot-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env Acrobot-v1 -f logs/ -orga dlantonia
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('buffer_size', 50000),
|
67 |
+
('exploration_final_eps', 0.1),
|
68 |
+
('exploration_fraction', 0.12),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('gradient_steps', -1),
|
71 |
+
('learning_rate', 0.00063),
|
72 |
+
('learning_starts', 0),
|
73 |
+
('n_timesteps', 100000.0),
|
74 |
+
('policy', 'MlpPolicy'),
|
75 |
+
('policy_kwargs', 'dict(net_arch=[256, 256])'),
|
76 |
+
('target_update_interval', 250),
|
77 |
+
('train_freq', 4),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
80 |
+
|
81 |
+
# Environment Arguments
|
82 |
+
```python
|
83 |
+
{'render_mode': 'rgb_array'}
|
84 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- dqn
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Acrobot-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- logs/
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- -1
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 3524042168
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- ''
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - buffer_size
|
5 |
+
- 50000
|
6 |
+
- - exploration_final_eps
|
7 |
+
- 0.1
|
8 |
+
- - exploration_fraction
|
9 |
+
- 0.12
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - gradient_steps
|
13 |
+
- -1
|
14 |
+
- - learning_rate
|
15 |
+
- 0.00063
|
16 |
+
- - learning_starts
|
17 |
+
- 0
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[256, 256])
|
24 |
+
- - target_update_interval
|
25 |
+
- 250
|
26 |
+
- - train_freq
|
27 |
+
- 4
|
dqn-Acrobot-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf45e97f17b5161d8d28e1d74ce10823fb8b3e8c80110abef1e695e461868adf
|
3 |
+
size 1121979
|
dqn-Acrobot-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.4.0a7
|
dqn-Acrobot-v1/data
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fe2bd786560>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7fe2bd7865f0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fe2bd786680>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7fe2bd786710>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7fe2bd7867a0>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe2bd786830>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe2bd7868c0>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe2bd78bec0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"num_timesteps": 100000,
|
26 |
+
"_total_timesteps": 100000,
|
27 |
+
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": 0,
|
29 |
+
"action_noise": null,
|
30 |
+
"start_time": 1723040556991871906,
|
31 |
+
"learning_rate": {
|
32 |
+
":type:": "<class 'function'>",
|
33 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
34 |
+
},
|
35 |
+
"tensorboard_log": null,
|
36 |
+
"_last_obs": null,
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAGteUD8CuRQ/NSAyPwreN7874FW/ylOTP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
|
44 |
+
},
|
45 |
+
"_episode_num": 1004,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": 0.0,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFGAAAAAAACMAWyUS0eMAXSUR0BzQ25TZQHidX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BzSAXP7el9dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BzTQW56MR6dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BzUnPVurIYdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BzWD5IpYs/dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BzXdz4k/r0dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BzY08wHqu9dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BzaU/fO2RadX2UKGgGR8BWQAAAAAAAaAdLWmgIR0Bzb9oBaLXMdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BzdVJQLux9dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0Bzeo4iosI3dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BzgRD6WPcSdX2UKGgGR8BkgAAAAAAAaAdLpWgIR0BziS6z3RG+dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BzjVDMNc4YdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BzkNhPTG5udX2UKGgGR8BbAAAAAAAAaAdLbWgIR0BzljrzGxUvdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BzmnhUBGQTdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BznvEWIoE0dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BzozXL/0dzdX2UKGgGR8Bg4AAAAAAAaAdLiGgIR0BzqiUB4lhPdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BzrZ5t3wCsdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BzsW2oegctdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BztTzUZvUCdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0Bzunw/gR9PdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BzviKIi1RcdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BzwqGIsRQKdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0Bzxlo0ygwodX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BzynxNIsiCdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BzzyRjjJdTdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0Bz03R4QjD9dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bz17MW43FUdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0Bz3MuAZsKtdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0Bz4BeBxxT9dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bz5FbQkX1rdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0Bz6Yz7/GVBdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0Bz7kydnTRZdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0Bz8ug/TspodX2UKGgGR8BVQAAAAAAAaAdLVmgIR0Bz9w+cH4XXdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0Bz+zCgsbvPdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bz/wM+eOGTdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0B0AoFwDNhWdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0B0Wi1y/9dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0C17eEZivdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0D+qdYnv2dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0FFKpT/ACdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0F5EfDDTCdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0G5k8RtgsdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0B0H6xY7q6fdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0B0JNrbg0j1dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0B0KoBDG96DdX2UKGgGR8BeQAAAAAAAaAdLemgIR0B0MfcQAdXDdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0B0NvX9R77bdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0PByKekHldX2UKGgGR8BSgAAAAAAAaAdLS2gIR0B0QUURFqi5dX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B0SCjFhodudX2UKGgGR8BYwAAAAAAAaAdLZGgIR0B0TtFnZkCndX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0VTxiG34LdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0B0WT8fms/6dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0XPrSmZVodX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0YM+u/1xsdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0ZgCdSVGDdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B0aqc/dIoWdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0B0bxpeu3c6dX2UKGgGR8BpgAAAAAAAaAdLzWgIR0B0eUjfNzKcdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B0fW619fCzdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0B0gYqvvBrOdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0hUGnn+yadX2UKGgGR8BWQAAAAAAAaAdLWmgIR0B0iicDr7fpdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0B0jyu/1xsEdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0B0kr2xptaZdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B0lwCDEm6YdX2UKGgGR8BaAAAAAAAAaAdLaWgIR0B0nGukk8ifdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B0oDvXsgMddX2UKGgGR8BUQAAAAAAAaAdLUmgIR0B0pH9KmKqGdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0B0qGpkwvg4dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0q6d9Ujs2dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0rta9sabXdX2UKGgGR8BbQAAAAAAAaAdLbmgIR0B0tAulGgBcdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0B0uAfvF3pwdX2UKGgGR8BbgAAAAAAAaAdLb2gIR0B0vc86mwaBdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0B0wVw97ngYdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B0xm67NB4VdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0B0y24x1xKhdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0z3Fm4AjqdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0B009BY3eendX2UKGgGR8BZAAAAAAAAaAdLZWgIR0B02OOAAhjfdX2UKGgGR8BdgAAAAAAAaAdLd2gIR0B03wmICU5ddX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B044srd30PdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0B059/WlMyrdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0B07R1KXfIkdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B08bmSyMUAdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B09nsdDIBBdX2UKGgGR8BZgAAAAAAAaAdLZ2gIR0B0/P8P4EfUdX2UKGgGR8BagAAAAAAAaAdLa2gIR0B1A7+kxh2GdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0B1COj+JgstdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B1D6OCGvfTdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B1FPQa72+PdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0B1GonBtUGWdX2UKGgGR8BagAAAAAAAaAdLa2gIR0B1Ib7UG3WndX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B1J8dKdxyXdWUu"
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 100000,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
62 |
+
"dtype": "float32",
|
63 |
+
"bounded_below": "[ True True True True True True]",
|
64 |
+
"bounded_above": "[ True True True True True True]",
|
65 |
+
"_shape": [
|
66 |
+
6
|
67 |
+
],
|
68 |
+
"low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
69 |
+
"high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
70 |
+
"low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
71 |
+
"high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
72 |
+
"_np_random": null
|
73 |
+
},
|
74 |
+
"action_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
+
":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
77 |
+
"n": "3",
|
78 |
+
"start": "0",
|
79 |
+
"_shape": [],
|
80 |
+
"dtype": "int64",
|
81 |
+
"_np_random": "Generator(PCG64)"
|
82 |
+
},
|
83 |
+
"n_envs": 1,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 128,
|
86 |
+
"learning_starts": 0,
|
87 |
+
"tau": 1.0,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": -1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
96 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
97 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fe2bd8cbc70>",
|
98 |
+
"add": "<function ReplayBuffer.add at 0x7fe2bd8cbd00>",
|
99 |
+
"sample": "<function ReplayBuffer.sample at 0x7fe2bd8cbd90>",
|
100 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fe2bd8cbe20>",
|
101 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fe2bd8cbeb0>)>",
|
102 |
+
"__abstractmethods__": "frozenset()",
|
103 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe2bdaa0440>"
|
104 |
+
},
|
105 |
+
"replay_buffer_kwargs": {},
|
106 |
+
"train_freq": {
|
107 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
108 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
109 |
+
},
|
110 |
+
"use_sde_at_warmup": false,
|
111 |
+
"exploration_initial_eps": 1.0,
|
112 |
+
"exploration_final_eps": 0.1,
|
113 |
+
"exploration_fraction": 0.12,
|
114 |
+
"target_update_interval": 250,
|
115 |
+
"_n_calls": 100000,
|
116 |
+
"max_grad_norm": 10,
|
117 |
+
"exploration_rate": 0.1,
|
118 |
+
"lr_schedule": {
|
119 |
+
":type:": "<class 'function'>",
|
120 |
+
":serialized:": "gAWVewQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoRH2UfZQoaBhoN2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg/aC5OaC9oMUc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaExdlGhOfZR1hpSGUjAu"
|
121 |
+
},
|
122 |
+
"batch_norm_stats": [],
|
123 |
+
"batch_norm_stats_target": [],
|
124 |
+
"exploration_schedule": {
|
125 |
+
":type:": "<class 'function'>",
|
126 |
+
":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLc0MGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
127 |
+
}
|
128 |
+
}
|
dqn-Acrobot-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02f396a973515c9df4e2039e19bfb8aa86ad2afd825667b294006624a5d7ea2a
|
3 |
+
size 552288
|
dqn-Acrobot-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8da499005ee4c75118c35d6ad8c3fe9f0eaade4a54e2d8b4f7530baa970eaf35
|
3 |
+
size 551346
|
dqn-Acrobot-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
dqn-Acrobot-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.4.0a7
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
Binary file (395 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T14:28:27.969199"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4412ff081b7a60b65bfcb1637229ad40a473c7fab449b3690d714eb313d0f254
|
3 |
+
size 22737
|