dlantonia commited on
Commit
4cfcb8c
1 Parent(s): 8cc4497

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Acrobot-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Acrobot-v1
16
+ type: Acrobot-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **Acrobot-v1**
25
+ This is a trained model of a **DQN** agent playing **Acrobot-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga dlantonia -f logs/
47
+ python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga dlantonia -f logs/
53
+ python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo dqn --env Acrobot-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo dqn --env Acrobot-v1 -f logs/ -orga dlantonia
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('buffer_size', 50000),
67
+ ('exploration_final_eps', 0.1),
68
+ ('exploration_fraction', 0.12),
69
+ ('gamma', 0.99),
70
+ ('gradient_steps', -1),
71
+ ('learning_rate', 0.00063),
72
+ ('learning_starts', 0),
73
+ ('n_timesteps', 100000.0),
74
+ ('policy', 'MlpPolicy'),
75
+ ('policy_kwargs', 'dict(net_arch=[256, 256])'),
76
+ ('target_update_interval', 250),
77
+ ('train_freq', 4),
78
+ ('normalize', False)])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Acrobot-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - -1
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 3524042168
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - buffer_size
5
+ - 50000
6
+ - - exploration_final_eps
7
+ - 0.1
8
+ - - exploration_fraction
9
+ - 0.12
10
+ - - gamma
11
+ - 0.99
12
+ - - gradient_steps
13
+ - -1
14
+ - - learning_rate
15
+ - 0.00063
16
+ - - learning_starts
17
+ - 0
18
+ - - n_timesteps
19
+ - 100000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[256, 256])
24
+ - - target_update_interval
25
+ - 250
26
+ - - train_freq
27
+ - 4
dqn-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf45e97f17b5161d8d28e1d74ce10823fb8b3e8c80110abef1e695e461868adf
3
+ size 1121979
dqn-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.4.0a7
dqn-Acrobot-v1/data ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7fe2bd786560>",
9
+ "_build": "<function DQNPolicy._build at 0x7fe2bd7865f0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fe2bd786680>",
11
+ "forward": "<function DQNPolicy.forward at 0x7fe2bd786710>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7fe2bd7867a0>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe2bd786830>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe2bd7868c0>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7fe2bd78bec0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 100000,
26
+ "_total_timesteps": 100000,
27
+ "_num_timesteps_at_start": 0,
28
+ "seed": 0,
29
+ "action_noise": null,
30
+ "start_time": 1723040556991871906,
31
+ "learning_rate": {
32
+ ":type:": "<class 'function'>",
33
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
34
+ },
35
+ "tensorboard_log": null,
36
+ "_last_obs": null,
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAGteUD8CuRQ/NSAyPwreN7874FW/ylOTP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
44
+ },
45
+ "_episode_num": 1004,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.0,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFGAAAAAAACMAWyUS0eMAXSUR0BzQ25TZQHidX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BzSAXP7el9dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BzTQW56MR6dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BzUnPVurIYdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BzWD5IpYs/dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BzXdz4k/r0dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BzY08wHqu9dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BzaU/fO2RadX2UKGgGR8BWQAAAAAAAaAdLWmgIR0Bzb9oBaLXMdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BzdVJQLux9dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0Bzeo4iosI3dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BzgRD6WPcSdX2UKGgGR8BkgAAAAAAAaAdLpWgIR0BziS6z3RG+dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BzjVDMNc4YdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BzkNhPTG5udX2UKGgGR8BbAAAAAAAAaAdLbWgIR0BzljrzGxUvdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BzmnhUBGQTdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BznvEWIoE0dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BzozXL/0dzdX2UKGgGR8Bg4AAAAAAAaAdLiGgIR0BzqiUB4lhPdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BzrZ5t3wCsdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BzsW2oegctdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BztTzUZvUCdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0Bzunw/gR9PdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BzviKIi1RcdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BzwqGIsRQKdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0Bzxlo0ygwodX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BzynxNIsiCdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BzzyRjjJdTdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0Bz03R4QjD9dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bz17MW43FUdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0Bz3MuAZsKtdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0Bz4BeBxxT9dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bz5FbQkX1rdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0Bz6Yz7/GVBdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0Bz7kydnTRZdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0Bz8ug/TspodX2UKGgGR8BVQAAAAAAAaAdLVmgIR0Bz9w+cH4XXdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0Bz+zCgsbvPdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bz/wM+eOGTdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0B0AoFwDNhWdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0B0Wi1y/9dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0C17eEZivdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0D+qdYnv2dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0FFKpT/ACdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0F5EfDDTCdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0G5k8RtgsdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0B0H6xY7q6fdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0B0JNrbg0j1dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0B0KoBDG96DdX2UKGgGR8BeQAAAAAAAaAdLemgIR0B0MfcQAdXDdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0B0NvX9R77bdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0PByKekHldX2UKGgGR8BSgAAAAAAAaAdLS2gIR0B0QUURFqi5dX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B0SCjFhodudX2UKGgGR8BYwAAAAAAAaAdLZGgIR0B0TtFnZkCndX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0VTxiG34LdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0B0WT8fms/6dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0XPrSmZVodX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0YM+u/1xsdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0ZgCdSVGDdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B0aqc/dIoWdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0B0bxpeu3c6dX2UKGgGR8BpgAAAAAAAaAdLzWgIR0B0eUjfNzKcdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B0fW619fCzdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0B0gYqvvBrOdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0hUGnn+yadX2UKGgGR8BWQAAAAAAAaAdLWmgIR0B0iicDr7fpdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0B0jyu/1xsEdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0B0kr2xptaZdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B0lwCDEm6YdX2UKGgGR8BaAAAAAAAAaAdLaWgIR0B0nGukk8ifdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B0oDvXsgMddX2UKGgGR8BUQAAAAAAAaAdLUmgIR0B0pH9KmKqGdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0B0qGpkwvg4dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0q6d9Ujs2dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0rta9sabXdX2UKGgGR8BbQAAAAAAAaAdLbmgIR0B0tAulGgBcdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0B0uAfvF3pwdX2UKGgGR8BbgAAAAAAAaAdLb2gIR0B0vc86mwaBdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0B0wVw97ngYdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B0xm67NB4VdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0B0y24x1xKhdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0z3Fm4AjqdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0B009BY3eendX2UKGgGR8BZAAAAAAAAaAdLZWgIR0B02OOAAhjfdX2UKGgGR8BdgAAAAAAAaAdLd2gIR0B03wmICU5ddX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B044srd30PdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0B059/WlMyrdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0B07R1KXfIkdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B08bmSyMUAdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B09nsdDIBBdX2UKGgGR8BZgAAAAAAAaAdLZ2gIR0B0/P8P4EfUdX2UKGgGR8BagAAAAAAAaAdLa2gIR0B1A7+kxh2GdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0B1COj+JgstdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B1D6OCGvfTdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B1FPQa72+PdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0B1GonBtUGWdX2UKGgGR8BagAAAAAAAaAdLa2gIR0B1Ib7UG3WndX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B1J8dKdxyXdWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 100000,
59
+ "observation_space": {
60
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
+ ":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
62
+ "dtype": "float32",
63
+ "bounded_below": "[ True True True True True True]",
64
+ "bounded_above": "[ True True True True True True]",
65
+ "_shape": [
66
+ 6
67
+ ],
68
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
69
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
70
+ "low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
71
+ "high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]",
72
+ "_np_random": null
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
77
+ "n": "3",
78
+ "start": "0",
79
+ "_shape": [],
80
+ "dtype": "int64",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 1,
84
+ "buffer_size": 1,
85
+ "batch_size": 128,
86
+ "learning_starts": 0,
87
+ "tau": 1.0,
88
+ "gamma": 0.99,
89
+ "gradient_steps": -1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
96
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
97
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fe2bd8cbc70>",
98
+ "add": "<function ReplayBuffer.add at 0x7fe2bd8cbd00>",
99
+ "sample": "<function ReplayBuffer.sample at 0x7fe2bd8cbd90>",
100
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe2bd8cbe20>",
101
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fe2bd8cbeb0>)>",
102
+ "__abstractmethods__": "frozenset()",
103
+ "_abc_impl": "<_abc._abc_data object at 0x7fe2bdaa0440>"
104
+ },
105
+ "replay_buffer_kwargs": {},
106
+ "train_freq": {
107
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
108
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
109
+ },
110
+ "use_sde_at_warmup": false,
111
+ "exploration_initial_eps": 1.0,
112
+ "exploration_final_eps": 0.1,
113
+ "exploration_fraction": 0.12,
114
+ "target_update_interval": 250,
115
+ "_n_calls": 100000,
116
+ "max_grad_norm": 10,
117
+ "exploration_rate": 0.1,
118
+ "lr_schedule": {
119
+ ":type:": "<class 'function'>",
120
+ ":serialized:": "gAWVewQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoRH2UfZQoaBhoN2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg/aC5OaC9oMUc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaExdlGhOfZR1hpSGUjAu"
121
+ },
122
+ "batch_norm_stats": [],
123
+ "batch_norm_stats_target": [],
124
+ "exploration_schedule": {
125
+ ":type:": "<class 'function'>",
126
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLc0MGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
127
+ }
128
+ }
dqn-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02f396a973515c9df4e2039e19bfb8aa86ad2afd825667b294006624a5d7ea2a
3
+ size 552288
dqn-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8da499005ee4c75118c35d6ad8c3fe9f0eaade4a54e2d8b4f7530baa970eaf35
3
+ size 551346
dqn-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
dqn-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.4.0a7
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
Binary file (395 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-07T14:28:27.969199"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4412ff081b7a60b65bfcb1637229ad40a473c7fab449b3690d714eb313d0f254
3
+ size 22737