--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500_aug5 results: [] --- # distilbert-base-uncased-finetuned-ft1500_norm500_aug5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8927 - Mse: 2.9755 - Mae: 1.0176 - R2: 0.4184 - Accuracy: 0.5003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.4176 | 1.0 | 3952 | 1.0499 | 3.4996 | 1.0853 | 0.3160 | 0.4593 | | 0.3196 | 2.0 | 7904 | 0.8670 | 2.8901 | 1.0503 | 0.4351 | 0.4600 | | 0.2084 | 3.0 | 11856 | 0.8927 | 2.9755 | 1.0176 | 0.4184 | 0.5003 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1