--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-ft1500_reg2 results: [] --- # distilbert-base-uncased-finetuned-ft1500_reg2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7256 - Mse: 0.7256 - Mae: 0.6674 - R2: 0.4579 - Accuracy: 0.4573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 1.0689 | 1.0 | 3000 | 0.7823 | 0.7823 | 0.6948 | 0.4156 | 0.4327 | | 0.6733 | 2.0 | 6000 | 0.7286 | 0.7286 | 0.6705 | 0.4556 | 0.4447 | | 0.4735 | 3.0 | 9000 | 0.7125 | 0.7125 | 0.6658 | 0.4677 | 0.46 | | 0.3358 | 4.0 | 12000 | 0.7256 | 0.7256 | 0.6674 | 0.4579 | 0.4573 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1