File size: 1,879 Bytes
fb2e3fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ft1500_reg3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ft1500_reg3
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7954
- Mse: 0.7954
- Mae: 0.6900
- R2: 0.4769
- Accuracy: 0.4459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:|
| 1.018 | 1.0 | 3122 | 0.7491 | 0.7491 | 0.6739 | 0.5073 | 0.4555 |
| 0.668 | 2.0 | 6244 | 0.7397 | 0.7397 | 0.6687 | 0.5135 | 0.4689 |
| 0.4871 | 3.0 | 9366 | 0.7542 | 0.7542 | 0.6730 | 0.5040 | 0.4606 |
| 0.3419 | 4.0 | 12488 | 0.7710 | 0.7710 | 0.6802 | 0.4929 | 0.4536 |
| 0.2532 | 5.0 | 15610 | 0.7954 | 0.7954 | 0.6900 | 0.4769 | 0.4459 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|