dminiotas05 commited on
Commit
ad4b0f1
1 Parent(s): 6106c99

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: distilbert-base-uncased-finetuned-ft750_reg5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # distilbert-base-uncased-finetuned-ft750_reg5
16
+
17
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6298
20
+ - Mse: 0.6298
21
+ - Mae: 0.6087
22
+ - R2: 0.4072
23
+ - Accuracy: 0.4973
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 64
44
+ - eval_batch_size: 64
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 3
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:|
54
+ | 1.8617 | 1.0 | 188 | 0.7482 | 0.7482 | 0.6639 | 0.2957 | 0.4707 |
55
+ | 0.5667 | 2.0 | 376 | 0.6017 | 0.6017 | 0.5978 | 0.4336 | 0.5127 |
56
+ | 0.5038 | 3.0 | 564 | 0.6298 | 0.6298 | 0.6087 | 0.4072 | 0.4973 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.21.0
62
+ - Pytorch 1.12.0+cu113
63
+ - Datasets 2.4.0
64
+ - Tokenizers 0.12.1