--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-ft750_reg5 results: [] --- # distilbert-base-uncased-finetuned-ft750_reg5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6298 - Mse: 0.6298 - Mae: 0.6087 - R2: 0.4072 - Accuracy: 0.4973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 1.8617 | 1.0 | 188 | 0.7482 | 0.7482 | 0.6639 | 0.2957 | 0.4707 | | 0.5667 | 2.0 | 376 | 0.6017 | 0.6017 | 0.5978 | 0.4336 | 0.5127 | | 0.5038 | 3.0 | 564 | 0.6298 | 0.6298 | 0.6087 | 0.4072 | 0.4973 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1