dmis-lab nazneen commited on
Commit
c6fe8b0
1 Parent(s): 129c7b7

model documentation (#3)

Browse files

- model documentation (3ca86dcaacef6855a6826741880bc575408768de)


Co-authored-by: Nazneen Rajani <nazneen@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +169 -0
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - bert
4
+ ---
5
+
6
+ # Model Card for biosyn-sapbert-ncbi-disease
7
+
8
+
9
+
10
+ # Model Details
11
+
12
+ ## Model Description
13
+
14
+ More information needed
15
+
16
+ - **Developed by:** Dmis-lab (Data Mining and Information Systems Lab, Korea University)
17
+ - **Shared by [Optional]:** Hugging Face
18
+ - **Model type:** Feature Extraction
19
+ - **Language(s) (NLP):** More information needed
20
+ - **License:** More information needed
21
+ - **Related Models:**
22
+ - **Parent Model:** BERT
23
+ - **Resources for more information:**
24
+ - [GitHub Repo](https://github.com/jhyuklee/biobert)
25
+ - [Associated Paper](https://arxiv.org/abs/1901.08746)
26
+
27
+ # Uses
28
+
29
+
30
+ ## Direct Use
31
+
32
+ This model can be used for the task of Feature Extraction
33
+
34
+ ## Downstream Use [Optional]
35
+
36
+ More information needed
37
+
38
+ ## Out-of-Scope Use
39
+
40
+ The model should not be used to intentionally create hostile or alienating environments for people.
41
+
42
+ # Bias, Risks, and Limitations
43
+
44
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
45
+
46
+
47
+ ## Recommendations
48
+
49
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
50
+
51
+
52
+ # Training Details
53
+
54
+ ## Training Data
55
+ The model creators note in the [associated paper](https://arxiv.org/pdf/1901.08746.pdf)
56
+ > We used the BERTBASE model pre-trained on English Wikipedia and BooksCorpus for 1M steps. BioBERT v1.0 (þ PubMed þ PMC) is the version of BioBERT (þ PubMed þ PMC) trained for 470 K steps. When using both the PubMed and PMC corpora, we found that 200K and 270K pre-training steps were optimal for PubMed and PMC, respectively. We also used the ablated versions of BioBERT v1.0, which were pre-trained on only PubMed for 200K steps (BioBERT v1.0 (þ PubMed)) and PMC for 270K steps (BioBERT v1.0 (þ PMC))
57
+
58
+ ## Training Procedure
59
+
60
+ ### Preprocessing
61
+ The model creators note in the [associated paper](https://arxiv.org/pdf/1901.08746.pdf)
62
+ > We pre-trained BioBERT using Naver Smart Machine Learning (NSML) (Sung et al., 2017), which is utilized for large-scale experiments that need to be run on several GPUs
63
+
64
+ ### Speeds, Sizes, Times
65
+ The model creators note in the [associated paper](https://arxiv.org/pdf/1901.08746.pdf)
66
+ > The maximum sequence length was fixed to 512 and the mini-batch size was set to 192, resulting in 98 304 words per iteration.
67
+
68
+ # Evaluation
69
+
70
+ ## Testing Data, Factors & Metrics
71
+
72
+ ### Testing Data
73
+
74
+ More information needed
75
+
76
+ ### Factors
77
+
78
+ More information needed
79
+
80
+ ### Metrics
81
+
82
+
83
+
84
+ More information needed
85
+
86
+ ## Results
87
+ More information needed
88
+
89
+ # Model Examination
90
+
91
+ More information needed
92
+
93
+ # Environmental Impact
94
+
95
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
96
+
97
+ - **Hardware Type:**
98
+ - **Training:** Eight NVIDIA V100 (32GB) GPUs [ for training],
99
+ - **Fine-tuning:** a single NVIDIA Titan Xp (12GB) GPU to fine-tune BioBERT on each task
100
+ - **Hours used:** More information needed
101
+ - **Cloud Provider:** More information needed
102
+ - **Compute Region:** More information needed
103
+ - **Carbon Emitted:** More information needed
104
+
105
+ # Technical Specifications [optional]
106
+
107
+ ## Model Architecture and Objective
108
+
109
+ More information needed
110
+
111
+ ## Compute Infrastructure
112
+
113
+ More information needed
114
+
115
+ ### Hardware
116
+
117
+ More information needed
118
+
119
+ ### Software
120
+
121
+ More information needed
122
+
123
+ # Citation
124
+
125
+
126
+ **BibTeX:**
127
+ ```
128
+ @article{lee2019biobert,
129
+ title={BioBERT: a pre-trained biomedical language representation model for biomedical text mining},
130
+ author={Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo},
131
+ journal={arXiv preprint arXiv:1901.08746},
132
+ year={2019}
133
+ }
134
+ ```
135
+
136
+ # Glossary [optional]
137
+
138
+ More information needed
139
+
140
+ # More Information [optional]
141
+
142
+ For help or issues using BioBERT, please submit a GitHub issue. Please contact Jinhyuk Lee(`lee.jnhk (at) gmail.com`), or Wonjin Yoon (`wonjin.info (at) gmail.com`) for communication related to BioBERT.
143
+
144
+ # Model Card Authors [optional]
145
+
146
+
147
+ Dmis-lab (Data Mining and Information Systems Lab, Korea University) in collaboration with Ezi Ozoani and the Hugging Face team
148
+
149
+ # Model Card Contact
150
+
151
+ More information needed
152
+
153
+ # How to Get Started with the Model
154
+
155
+ Use the code below to get started with the model.
156
+
157
+ <details>
158
+ <summary> Click to expand </summary>
159
+
160
+ ```python
161
+ from transformers import AutoTokenizer, AutoModel
162
+
163
+ tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biosyn-sapbert-ncbi-disease")
164
+
165
+ model = AutoModel.from_pretrained("dmis-lab/biosyn-sapbert-ncbi-disease")
166
+
167
+ ```
168
+ </details>
169
+