--- license: afl-3.0 --- Example on how to load and use BOW-BERT: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer # load model model = AutoModelForSequenceClassification.from_pretrained('dmrau/bow-bert') # load tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # tokenize query and passage and concatenate them inp = tokenizer(['this is a query','query a is this'], ['this is a passage', 'passage a is this'], return_tensors='pt') # get estimated score print('score', model(**inp).logits[:, 1]) ### outputs identical scores for different ### word orders as the model is order invariant: # scores: [-2.9463, -2.9463] ``` Cite us: ``` @article{rau2022role, title={The Role of Complex NLP in Transformers for Text Ranking?}, author={Rau, David and Kamps, Jaap}, journal={arXiv preprint arXiv:2207.02522}, year={2022} } ```