|
import torch |
|
import transformers |
|
from typing import Any, Dict |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.model = AutoModelForCausalLM.from_pretrained(path, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
return_full_text = parameters.pop("return_full_text", True) |
|
|
|
|
|
inputs = self.tokenizer(inputs, |
|
return_tensors="pt", |
|
return_token_type_ids=False) |
|
inputs = inputs.to(self.device) |
|
input_len = len(inputs[0]) |
|
|
|
outputs = self.model.generate(**inputs, **parameters)[0] |
|
|
|
if not return_full_text: |
|
outputs = outputs[input_len:] |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs, |
|
skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |
|
|