dnarqq commited on
Commit
7b82e69
·
1 Parent(s): b84e15e
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.40 +/- 50.43
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b5e9198c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b5e9198ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b5e9198d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b5e9198dc0>", "_build": "<function ActorCriticPolicy._build at 0x78b5e9198e50>", "forward": "<function ActorCriticPolicy.forward at 0x78b5e9198ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b5e9198f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b5e9199000>", "_predict": "<function ActorCriticPolicy._predict at 0x78b5e9199090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b5e9199120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b5e91991b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b5e9199240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b5e9196500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689779679219970063, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpAlb32cCy60xHAuZy/HrbdVJu7pXrgOAAAgD8AAIA/ADKcvMPNH7otbx45q2hVMqSdarsDMzm4AACAPwAAgD/zDsA9j94fuiDwFDodTYO2DGzJurKLLrkAAAAAAACAP00AEr446ms/y1X9vTHYo759Hty9jFs/PQAAAAAAAAAAAFSNPBR8iLq2uVS8acfEtc5A47oQuTA1AACAPwAAAACa4ZW8psxDP+6mrDzAMp6+uIJ2vVLnej0AAAAAAAAAAADKjjwpdFq6PmNsunf8QDU+B3S7JuqJOQAAgD8AAIA/M5HuvFzDZroauO06T0HCNTJEXTnZGwi6AACAPwAAgD/NVlO89vRWuoQ8uLvH1tc4jiwnOg/2SjoAAIA/AACAP2YOJLyxHow+fVCvO2Lmsr5zi7I77q7qPAAAAAAAAAAATXByvRRO8rj2R3G7DZqPOMvERjobWuE5AACAPwAAgD8z+t28rqeZuB+1hTe9SnO2I0RbOgj4kLYAAIA/AACAP4ArWL2ueY66U+dPOrF7FzXSNa66kmRwuQAAgD8AAIA/mi0BPdy2cbzDto023yKJPCXIaD37Q948AACAPwAAgD8AAIM9waXavA5imb0S8qu93IOHPeNiOj4AAIA/AACAP2ZdXj72GqQ+pTZDvkeHUr4Mbl69iGB0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFv2h5Pdl/aMAWyUTegDjAF0lEdAkkvIqwyIpHV9lChoBkdAYJsl1r6+FmgHTegDaAhHQJJPIEidJ8R1fZQoaAZHQGDmkXk5p8FoB03oA2gIR0CST4hY/3WXdX2UKGgGR0Be0OsHSncdaAdN6ANoCEdAklpAwTM7l3V9lChoBkdAY8bpD/lyR2gHTegDaAhHQJJagkt29td1fZQoaAZHQGUBK7Ackt5oB03oA2gIR0CSZk8J2MbWdX2UKGgGR0BhwEjzI3iraAdN6ANoCEdAkmo6RZEDyXV9lChoBkdAYVxoWYWtVGgHTegDaAhHQJJwzFLnLaF1fZQoaAZHQF7Qjz7MxGloB03oA2gIR0CSfJAnDziCdX2UKGgGR0BhyJrN4Z/DaAdN6ANoCEdAknz8Djin53V9lChoBkdAXoHSLIgeR2gHTegDaAhHQJKCcCgbp/x1fZQoaAZHQEnJbRF7UodoB0vkaAhHQJKD4s8PnSx1fZQoaAZHQGKhuqm0mdBoB03oA2gIR0CShjXAM2FWdX2UKGgGR0Bf53YlIEr5aAdN6ANoCEdAkoa/MKTjenV9lChoBkdAYIm7e2uxKWgHTegDaAhHQJKIp9roGIN1fZQoaAZHQGOuF6JIlMRoB03oA2gIR0CSiZRoAXEZdX2UKGgGR0Be4+8Gs3hoaAdN6ANoCEdAko3RMSK3u3V9lChoBkdARm3zUZvUBmgHS95oCEdAko8YEB8x9HV9lChoBkdAY9Cjv/io9GgHTegDaAhHQJKklYwIt191fZQoaAZHQF72ydFvybxoB03oA2gIR0CSqSRO1v2odX2UKGgGR0BiWuGoJiRXaAdN6ANoCEdAkqm5WBBiTnV9lChoBkdARVia1Cw8n2gHS/loCEdAkrIxNVR1o3V9lChoBkdAPQrt7a7EpGgHS99oCEdAkrSdAgPmP3V9lChoBkdAZxOeii7Ci2gHTegDaAhHQJK1R8Ti84B1fZQoaAZHQF72q20AtFtoB03oA2gIR0CStYe4kNWmdX2UKGgGR0AxYC1qnFYMaAdL6mgIR0CSuPmm+CbudX2UKGgGR0BoNnHaN+9baAdN6ANoCEdAkr5XZXdTHnV9lChoBkdAaAhWAf+0gWgHTegDaAhHQJLAsG/vfCR1fZQoaAZHQE8bOE/SpitoB0vUaAhHQJLFWgCfYjB1fZQoaAZHQGQ6UfYBeX1oB03oA2gIR0CSy3mdiDujdX2UKGgGR0BkHnHcUM5PaAdN6ANoCEdAksvGRA8jiXV9lChoBkdAYwjK9PDYRWgHTegDaAhHQJLQDNUwSJ11fZQoaAZHQGRNs052hZhoB03oA2gIR0CS0+SF49owdX2UKGgGR0BlFoTZg5R1aAdN6ANoCEdAktRwDaGpM3V9lChoBkdAY1GxSHdoFmgHTegDaAhHQJLWeIj4YaZ1fZQoaAZHQGSEQmVqveRoB03oA2gIR0CS19gte2NOdX2UKGgGR0BigarilzltaAdN6ANoCEdAkt55mmLtNXV9lChoBkdAR/zq4YrJ82gHS+hoCEdAkvlkpd8iOnV9lChoBkdAKeja4+bExmgHS+doCEdAkvqVW0Z3tHV9lChoBkdAZZ/xusLfDWgHTegDaAhHQJL62ULUkOZ1fZQoaAZHQE0jkf9xZMdoB0vWaAhHQJL+o3vQWvd1fZQoaAZHQGUetOdoWYZoB03oA2gIR0CTAkREnb7CdX2UKGgGR0BjB5tP557gaAdN6ANoCEdAkwSenl4keXV9lChoBkdAZHkUrTYukGgHTegDaAhHQJMFLywwCbN1fZQoaAZHQGaWiL/CIk9oB03oA2gIR0CTBWj7Q9iddX2UKGgGR0BD4aCL/CIlaAdL6GgIR0CTBt9GZuyedX2UKGgGR0BRVs/MW43FaAdLxWgIR0CTCYuPmxMWdX2UKGgGR0BnfeinHeabaAdN6ANoCEdAkw1kedTYNHV9lChoBkdANFNOh0yP/GgHS+RoCEdAkw6QuRLbpXV9lChoBkdAZVnGLk0aZWgHTegDaAhHQJMPpQMx46h1fZQoaAZHQDxmNyYG+sZoB0vTaAhHQJMP2sQumJp1fZQoaAZHQGUeZVXFLnNoB03oA2gIR0CTFVaZQYUGdX2UKGgGR0BiJWJHiFTOaAdN6ANoCEdAkx15kwvg33V9lChoBkdAYNYwqy4WlGgHTegDaAhHQJMd604R28t1fZQoaAZHQGSmcUuctoVoB03oA2gIR0CTI/DQ7cO9dX2UKGgGR0BolKGahHskaAdN6ANoCEdAkye/u5SWJXV9lChoBkdAYxphqCYkV2gHTegDaAhHQJMoTgOz6ad1fZQoaAZHQE0824NI9TxoB0vEaAhHQJMqqCGvfTF1fZQoaAZHQGFgwYDTz/ZoB03oA2gIR0CTSazBRAKOdX2UKGgGR0BhXkSf16E8aAdN6ANoCEdAk0nxtLteD3V9lChoBkdAZdL6Y3Ns32gHTegDaAhHQJNZ9UWEbo91fZQoaAZHQGBMEnTiKixoB03oA2gIR0CTWlRa5f+kdX2UKGgGR0BjPLvgFX7taAdN6ANoCEdAk1zkug6EJ3V9lChoBkdAYL9MX7+DOGgHTegDaAhHQJNgQre67NB1fZQoaAZHQGYlTlDF6zFoB03oA2gIR0CTZDQ/X5FgdX2UKGgGR0Bmzbh73PAwaAdN6ANoCEdAk2VXVCojwHV9lChoBkdAYeNcQAdXDGgHTegDaAhHQJNmWIwdsBR1fZQoaAZHQGLgBOHnEEVoB03oA2gIR0CTZomaYu01dX2UKGgGR0Bdb8a86FM7aAdN6ANoCEdAk2oGBe5WinV9lChoBkdAZD+2/i5uqGgHTegDaAhHQJNu8vM8ox51fZQoaAZHQEOtlGwzLwFoB0voaAhHQJNx4pnYg7p1fZQoaAZHQGQ1LFwT/Q1oB03oA2gIR0CTczsFt8/mdX2UKGgGR0BjDSuuA7PqaAdN6ANoCEdAk3cqTnq3VnV9lChoBkdAZGg7qY7aI2gHTegDaAhHQJN3xc1O0sx1fZQoaAZHQGHnuw5eZ5RoB03oA2gIR0CTelqkuYhMdX2UKGgGR0BNThNmDlHSaAdL7mgIR0CTgJ0q6OHWdX2UKGgGR0Bm5R4jbBXTaAdN6ANoCEdAk52Hc+JP7HV9lChoBkdAY3kckMTewmgHTegDaAhHQJOdyR9w3o91fZQoaAZHQGMChTOxB3RoB03oA2gIR0CTqVp22XsxdX2UKGgGR0BjC0c4o7V8aAdN6ANoCEdAk6mcB2fTTnV9lChoBkdAYGqN0/4ZdmgHTegDaAhHQJOrP56+nIh1fZQoaAZHQGVxOuq3mV9oB03oA2gIR0CTrkHRkVesdX2UKGgGR0Bmi6PS2H+IaAdN6ANoCEdAk7JGtQsPKHV9lChoBkdAYgYhtcfNimgHTegDaAhHQJOze6kIomZ1fZQoaAZHQF2bX5FgDzRoB03oA2gIR0CTtNGAkLQYdX2UKGgGR0BAkWhRIjGDaAdL9WgIR0CTt4flp48mdX2UKGgGR0Bhp5Yq5LAYaAdN6ANoCEdAk7kU/8l5W3V9lChoBkdARyQ3o9s7+2gHS9poCEdAk7qPe+Eh7nV9lChoBkdAYoRDBuXNT2gHTegDaAhHQJO+dgkTpPh1fZQoaAZHQESIO801qFhoB0veaAhHQJO+rjwQUYd1fZQoaAZHQGKWQID5j6NoB03oA2gIR0CTwkJGe+VUdX2UKGgGR0BJUZrxiG34aAdL7GgIR0CTwsyVObiIdX2UKGgGR0BjvdGsmv4eaAdN6ANoCEdAk8jIfjjrA3V9lChoBkdAZQzU2DQJHGgHTegDaAhHQJPJgvduYQd1fZQoaAZHQGEn2phnanJoB03oA2gIR0CTzKmV7hNudX2UKGgGR0A4p/jsD4gzaAdL1WgIR0CTzXxuKoAGdX2UKGgGR0BHIQAuIyj6aAdL+WgIR0CT0IyLAHmjdX2UKGgGR0BSTvX05EMLaAdL9WgIR0CT05WykbgkdX2UKGgGR0BlDI3BHkLhaAdN6ANoCEdAk9QH0f5k9XV9lChoBkdARTyY3Ns3ymgHS9poCEdAk9a0yxiXpnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d449c8446649882d9e8ca13d217ebb3591ecc8db222136cdc6b87361003a40be
3
+ size 146726
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78b5e9198c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b5e9198ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b5e9198d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b5e9198dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78b5e9198e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78b5e9198ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b5e9198f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b5e9199000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78b5e9199090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b5e9199120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b5e91991b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b5e9199240>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78b5e9196500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689779679219970063,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpAlb32cCy60xHAuZy/HrbdVJu7pXrgOAAAgD8AAIA/ADKcvMPNH7otbx45q2hVMqSdarsDMzm4AACAPwAAgD/zDsA9j94fuiDwFDodTYO2DGzJurKLLrkAAAAAAACAP00AEr446ms/y1X9vTHYo759Hty9jFs/PQAAAAAAAAAAAFSNPBR8iLq2uVS8acfEtc5A47oQuTA1AACAPwAAAACa4ZW8psxDP+6mrDzAMp6+uIJ2vVLnej0AAAAAAAAAAADKjjwpdFq6PmNsunf8QDU+B3S7JuqJOQAAgD8AAIA/M5HuvFzDZroauO06T0HCNTJEXTnZGwi6AACAPwAAgD/NVlO89vRWuoQ8uLvH1tc4jiwnOg/2SjoAAIA/AACAP2YOJLyxHow+fVCvO2Lmsr5zi7I77q7qPAAAAAAAAAAATXByvRRO8rj2R3G7DZqPOMvERjobWuE5AACAPwAAgD8z+t28rqeZuB+1hTe9SnO2I0RbOgj4kLYAAIA/AACAP4ArWL2ueY66U+dPOrF7FzXSNa66kmRwuQAAgD8AAIA/mi0BPdy2cbzDto023yKJPCXIaD37Q948AACAPwAAgD8AAIM9waXavA5imb0S8qu93IOHPeNiOj4AAIA/AACAP2ZdXj72GqQ+pTZDvkeHUr4Mbl69iGB0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFv2h5Pdl/aMAWyUTegDjAF0lEdAkkvIqwyIpHV9lChoBkdAYJsl1r6+FmgHTegDaAhHQJJPIEidJ8R1fZQoaAZHQGDmkXk5p8FoB03oA2gIR0CST4hY/3WXdX2UKGgGR0Be0OsHSncdaAdN6ANoCEdAklpAwTM7l3V9lChoBkdAY8bpD/lyR2gHTegDaAhHQJJagkt29td1fZQoaAZHQGUBK7Ackt5oB03oA2gIR0CSZk8J2MbWdX2UKGgGR0BhwEjzI3iraAdN6ANoCEdAkmo6RZEDyXV9lChoBkdAYVxoWYWtVGgHTegDaAhHQJJwzFLnLaF1fZQoaAZHQF7Qjz7MxGloB03oA2gIR0CSfJAnDziCdX2UKGgGR0BhyJrN4Z/DaAdN6ANoCEdAknz8Djin53V9lChoBkdAXoHSLIgeR2gHTegDaAhHQJKCcCgbp/x1fZQoaAZHQEnJbRF7UodoB0vkaAhHQJKD4s8PnSx1fZQoaAZHQGKhuqm0mdBoB03oA2gIR0CShjXAM2FWdX2UKGgGR0Bf53YlIEr5aAdN6ANoCEdAkoa/MKTjenV9lChoBkdAYIm7e2uxKWgHTegDaAhHQJKIp9roGIN1fZQoaAZHQGOuF6JIlMRoB03oA2gIR0CSiZRoAXEZdX2UKGgGR0Be4+8Gs3hoaAdN6ANoCEdAko3RMSK3u3V9lChoBkdARm3zUZvUBmgHS95oCEdAko8YEB8x9HV9lChoBkdAY9Cjv/io9GgHTegDaAhHQJKklYwIt191fZQoaAZHQF72ydFvybxoB03oA2gIR0CSqSRO1v2odX2UKGgGR0BiWuGoJiRXaAdN6ANoCEdAkqm5WBBiTnV9lChoBkdARVia1Cw8n2gHS/loCEdAkrIxNVR1o3V9lChoBkdAPQrt7a7EpGgHS99oCEdAkrSdAgPmP3V9lChoBkdAZxOeii7Ci2gHTegDaAhHQJK1R8Ti84B1fZQoaAZHQF72q20AtFtoB03oA2gIR0CStYe4kNWmdX2UKGgGR0AxYC1qnFYMaAdL6mgIR0CSuPmm+CbudX2UKGgGR0BoNnHaN+9baAdN6ANoCEdAkr5XZXdTHnV9lChoBkdAaAhWAf+0gWgHTegDaAhHQJLAsG/vfCR1fZQoaAZHQE8bOE/SpitoB0vUaAhHQJLFWgCfYjB1fZQoaAZHQGQ6UfYBeX1oB03oA2gIR0CSy3mdiDujdX2UKGgGR0BkHnHcUM5PaAdN6ANoCEdAksvGRA8jiXV9lChoBkdAYwjK9PDYRWgHTegDaAhHQJLQDNUwSJ11fZQoaAZHQGRNs052hZhoB03oA2gIR0CS0+SF49owdX2UKGgGR0BlFoTZg5R1aAdN6ANoCEdAktRwDaGpM3V9lChoBkdAY1GxSHdoFmgHTegDaAhHQJLWeIj4YaZ1fZQoaAZHQGSEQmVqveRoB03oA2gIR0CS19gte2NOdX2UKGgGR0BigarilzltaAdN6ANoCEdAkt55mmLtNXV9lChoBkdAR/zq4YrJ82gHS+hoCEdAkvlkpd8iOnV9lChoBkdAKeja4+bExmgHS+doCEdAkvqVW0Z3tHV9lChoBkdAZZ/xusLfDWgHTegDaAhHQJL62ULUkOZ1fZQoaAZHQE0jkf9xZMdoB0vWaAhHQJL+o3vQWvd1fZQoaAZHQGUetOdoWYZoB03oA2gIR0CTAkREnb7CdX2UKGgGR0BjB5tP557gaAdN6ANoCEdAkwSenl4keXV9lChoBkdAZHkUrTYukGgHTegDaAhHQJMFLywwCbN1fZQoaAZHQGaWiL/CIk9oB03oA2gIR0CTBWj7Q9iddX2UKGgGR0BD4aCL/CIlaAdL6GgIR0CTBt9GZuyedX2UKGgGR0BRVs/MW43FaAdLxWgIR0CTCYuPmxMWdX2UKGgGR0BnfeinHeabaAdN6ANoCEdAkw1kedTYNHV9lChoBkdANFNOh0yP/GgHS+RoCEdAkw6QuRLbpXV9lChoBkdAZVnGLk0aZWgHTegDaAhHQJMPpQMx46h1fZQoaAZHQDxmNyYG+sZoB0vTaAhHQJMP2sQumJp1fZQoaAZHQGUeZVXFLnNoB03oA2gIR0CTFVaZQYUGdX2UKGgGR0BiJWJHiFTOaAdN6ANoCEdAkx15kwvg33V9lChoBkdAYNYwqy4WlGgHTegDaAhHQJMd604R28t1fZQoaAZHQGSmcUuctoVoB03oA2gIR0CTI/DQ7cO9dX2UKGgGR0BolKGahHskaAdN6ANoCEdAkye/u5SWJXV9lChoBkdAYxphqCYkV2gHTegDaAhHQJMoTgOz6ad1fZQoaAZHQE0824NI9TxoB0vEaAhHQJMqqCGvfTF1fZQoaAZHQGFgwYDTz/ZoB03oA2gIR0CTSazBRAKOdX2UKGgGR0BhXkSf16E8aAdN6ANoCEdAk0nxtLteD3V9lChoBkdAZdL6Y3Ns32gHTegDaAhHQJNZ9UWEbo91fZQoaAZHQGBMEnTiKixoB03oA2gIR0CTWlRa5f+kdX2UKGgGR0BjPLvgFX7taAdN6ANoCEdAk1zkug6EJ3V9lChoBkdAYL9MX7+DOGgHTegDaAhHQJNgQre67NB1fZQoaAZHQGYlTlDF6zFoB03oA2gIR0CTZDQ/X5FgdX2UKGgGR0Bmzbh73PAwaAdN6ANoCEdAk2VXVCojwHV9lChoBkdAYeNcQAdXDGgHTegDaAhHQJNmWIwdsBR1fZQoaAZHQGLgBOHnEEVoB03oA2gIR0CTZomaYu01dX2UKGgGR0Bdb8a86FM7aAdN6ANoCEdAk2oGBe5WinV9lChoBkdAZD+2/i5uqGgHTegDaAhHQJNu8vM8ox51fZQoaAZHQEOtlGwzLwFoB0voaAhHQJNx4pnYg7p1fZQoaAZHQGQ1LFwT/Q1oB03oA2gIR0CTczsFt8/mdX2UKGgGR0BjDSuuA7PqaAdN6ANoCEdAk3cqTnq3VnV9lChoBkdAZGg7qY7aI2gHTegDaAhHQJN3xc1O0sx1fZQoaAZHQGHnuw5eZ5RoB03oA2gIR0CTelqkuYhMdX2UKGgGR0BNThNmDlHSaAdL7mgIR0CTgJ0q6OHWdX2UKGgGR0Bm5R4jbBXTaAdN6ANoCEdAk52Hc+JP7HV9lChoBkdAY3kckMTewmgHTegDaAhHQJOdyR9w3o91fZQoaAZHQGMChTOxB3RoB03oA2gIR0CTqVp22XsxdX2UKGgGR0BjC0c4o7V8aAdN6ANoCEdAk6mcB2fTTnV9lChoBkdAYGqN0/4ZdmgHTegDaAhHQJOrP56+nIh1fZQoaAZHQGVxOuq3mV9oB03oA2gIR0CTrkHRkVesdX2UKGgGR0Bmi6PS2H+IaAdN6ANoCEdAk7JGtQsPKHV9lChoBkdAYgYhtcfNimgHTegDaAhHQJOze6kIomZ1fZQoaAZHQF2bX5FgDzRoB03oA2gIR0CTtNGAkLQYdX2UKGgGR0BAkWhRIjGDaAdL9WgIR0CTt4flp48mdX2UKGgGR0Bhp5Yq5LAYaAdN6ANoCEdAk7kU/8l5W3V9lChoBkdARyQ3o9s7+2gHS9poCEdAk7qPe+Eh7nV9lChoBkdAYoRDBuXNT2gHTegDaAhHQJO+dgkTpPh1fZQoaAZHQESIO801qFhoB0veaAhHQJO+rjwQUYd1fZQoaAZHQGKWQID5j6NoB03oA2gIR0CTwkJGe+VUdX2UKGgGR0BJUZrxiG34aAdL7GgIR0CTwsyVObiIdX2UKGgGR0BjvdGsmv4eaAdN6ANoCEdAk8jIfjjrA3V9lChoBkdAZQzU2DQJHGgHTegDaAhHQJPJgvduYQd1fZQoaAZHQGEn2phnanJoB03oA2gIR0CTzKmV7hNudX2UKGgGR0A4p/jsD4gzaAdL1WgIR0CTzXxuKoAGdX2UKGgGR0BHIQAuIyj6aAdL+WgIR0CT0IyLAHmjdX2UKGgGR0BSTvX05EMLaAdL9WgIR0CT05WykbgkdX2UKGgGR0BlDI3BHkLhaAdN6ANoCEdAk9QH0f5k9XV9lChoBkdARTyY3Ns3ymgHS9poCEdAk9a0yxiXpnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5c873bb311b36a8f5a840280318bb0ae343d2e84aac4e5cc82e69ae5d475de6
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:698dde467523d539caa0909727be175bd28549b3ec7ba762c9abbfd6e1a880df
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (166 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.39759879999997, "std_reward": 50.4307175794858, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-19T15:45:34.457512"}