from transformers import Trainer, AutoModelForSequenceClassification, AutoTokenizer from datasets import load_dataset, load_metric import json # Load configuration with open('../config/config.json') as f: config = json.load(f) # Load model and tokenizer model = AutoModelForSequenceClassification.from_pretrained('../model') tokenizer = AutoTokenizer.from_pretrained(config['model_name']) # Load dataset dataset = load_dataset('csv', data_files={'test': '../data/test.csv'}) tokenized_datasets = dataset.map(lambda x: tokenizer(x['text'], padding="max_length", truncation=True), batched=True) # Evaluation metric = load_metric("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = logits.argmax(axis=-1) return metric.compute(predictions=predictions, references=labels) trainer = Trainer( model=model, tokenizer=tokenizer, compute_metrics=compute_metrics ) results = trainer.evaluate(tokenized_datasets['test']) print(results)