Adapters
English
code
medical
File size: 2,754 Bytes
12d07c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfed092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: apache-2.0
datasets:
- stanfordnlp/imdb
- uoft-cs/cifar10
- superlazycoder/slc-titanic
language:
- en
metrics:
- bertscore
library_name: transformers
pipeline_tag: text-generation
tags:
- code
- medical
---
# Agentic Unified Mind UANN

This repository contains the implementation of the Agentic Unified Mind Universal Adaptive Neural Network (UANN), a multi-modal AI model designed to integrate text, image, and structured data processing. The model uses advanced neural network architectures and reinforcement learning to deliver robust performance across various applications.

## Model Description

The Agentic Unified Mind UANN integrates:
- Text processing using BERT.
- Image processing using ResNet50.
- Structured data processing with dense neural networks.
- Reinforcement learning for autonomous decision-making.

## Features

- **Multi-modal Inputs:** Handles text, images, and structured data.
- **Advanced Neural Network Architectures:** Uses BERT for text, ResNet50 for images, and dense layers for structured data.
- **Unified Cognitive Framework:** Combines information from multiple modalities for better decision-making.
- **Reinforcement Learning:** Enhances the model's ability to learn and adapt from interactions.

## Setup

### 1. Installation

Install the required dependencies:

```bash
pip install -r requirements.txt
```

### 2. Model Training

To train the model, run:

```bash
python app.py
```

### 3. API Integration

The project includes a Flask API for storing and retrieving model predictions.

**API Setup:**

1. Install Flask and necessary libraries:

    ```bash
    pip install flask flask_sqlalchemy flask_cors
    ```

2. Configure your database URI in `api.py`.

3. Run the Flask API:

    ```bash
    python api.py
    ```

### 4. Gradio Interface

To launch the Gradio interface:

```bash
python app.py
```

### Directory Structure

```
agentic_uann_model/
β”œβ”€β”€ app.py
β”œβ”€β”€ api.py
β”œβ”€β”€ requirements.txt
└── models/
    └── model_files/
```

## Deployment

1. Push your repository to Hugging Face Spaces.
2. Navigate to Hugging Face Spaces and create a new Space.
3. Select "Gradio" as the framework.
4. Connect your GitHub repository or upload the files directly.
5. Choose the desired hardware, such as an A100 40GB GPU.

## Usage

- **Chat Interface:** Interact with the model using a chat interface.
- **Code Execution:** Execute code snippets and view outputs.

## License

This project is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for more details.

---

By following this guide, you will be able to set up and deploy the Agentic Unified Mind UANN, leveraging its multi-modal processing capabilities and reinforcement learning framework.