Adapters
English
code
medical
File size: 1,154 Bytes
bf26a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from models.moe_model import MoEModel
from utils.data_loader import load_data

# Load data
train_loader, test_loader = load_data()

# Initialize model, loss function, and optimizer
model = MoEModel(input_dim=512, num_experts=3)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Training loop
for epoch in range(10):
    model.train()
    for vision_input, audio_input, sensor_input, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(vision_input, audio_input, sensor_input)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    print(f"Epoch {epoch+1}, Loss: {loss.item()}")

# Evaluation
model.eval()
correct, total = 0, 0
with torch.no_grad():
    for vision_input, audio_input, sensor_input, labels in test_loader:
        outputs = model(vision_input, audio_input, sensor_input)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f"Accuracy: {100 * correct / total}%")