Create App.py
Browse files
App.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from transformers import BertTokenizer, TFBertModel
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load your model
|
7 |
+
model = tf.keras.models.load_model('models/model_files')
|
8 |
+
|
9 |
+
# Load tokenizer
|
10 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
11 |
+
|
12 |
+
def preprocess_text(text):
|
13 |
+
inputs = tokenizer(text, return_tensors='tf', padding=True, truncation=True, max_length=512)
|
14 |
+
return inputs
|
15 |
+
|
16 |
+
def predict(text, image, structured):
|
17 |
+
text_inputs = preprocess_text(text)
|
18 |
+
image = tf.image.resize(image, (224, 224))
|
19 |
+
image = tf.keras.applications.resnet50.preprocess_input(image)
|
20 |
+
structured = (structured - structured.mean()) / structured.std()
|
21 |
+
prediction = model.predict([text_inputs['input_ids'], text_inputs['attention_mask'], image, structured])
|
22 |
+
return prediction[0][0]
|
23 |
+
|
24 |
+
# Define the chat function
|
25 |
+
def chat_response(user_input):
|
26 |
+
return f"Model response to: {user_input}"
|
27 |
+
|
28 |
+
# Define the code execution function
|
29 |
+
def execute_code(code):
|
30 |
+
exec_globals = {}
|
31 |
+
exec(code, exec_globals)
|
32 |
+
return exec_globals.get("output", "No output")
|
33 |
+
|
34 |
+
with gr.Blocks() as demo:
|
35 |
+
with gr.Row():
|
36 |
+
with gr.Column():
|
37 |
+
chat_input = gr.Textbox(lines=2, placeholder="Enter your message here...")
|
38 |
+
chat_output = gr.Textbox(lines=5, placeholder="Model response will appear here...")
|
39 |
+
chat_button = gr.Button("Send")
|
40 |
+
with gr.Column():
|
41 |
+
code_input = gr.Textbox(lines=10, placeholder="Enter your code here...")
|
42 |
+
code_output = gr.Textbox(lines=5, placeholder="Code output will appear here...")
|
43 |
+
code_button = gr.Button("Run Code")
|
44 |
+
|
45 |
+
chat_button.click(chat_response, inputs=chat_input, outputs=chat_output)
|
46 |
+
code_button.click(execute_code, inputs=code_input, outputs=code_output)
|
47 |
+
|
48 |
+
demo.launch()
|