File size: 9,046 Bytes
b00bdac
c9be19e
 
 
 
b00bdac
c9be19e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
---
language: code
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png
datasets:
- code_search_net
license: apache-2.0
base_model: huggingface/CodeBERTa-small-v1
---

# CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯


To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the [`CodeBERTa-small-v1`](https://huggingface.co/huggingface/CodeBERTa-small-v1) checkpoint on the task of classifying a sample of code into the programming language it's written in (*programming language identification*).

We add a sequence classification head on top of the model.

On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below).

## Quick start: using the raw model

```python
CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id"

tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID)

input_ids = tokenizer.encode(CODE_TO_IDENTIFY)
logits = model(input_ids)[0]

language_idx = logits.argmax() # index for the resulting label
```


## Quick start: using Pipelines 💪

```python
from transformers import TextClassificationPipeline

pipeline = TextClassificationPipeline(
    model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID),
    tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
)

pipeline(CODE_TO_IDENTIFY)
```

Let's start with something very easy:

```python
pipeline("""
def f(x):
    return x**2
""")
# [{'label': 'python', 'score': 0.9999965}]
```

Now let's probe shorter code samples:

```python
pipeline("const foo = 'bar'")
# [{'label': 'javascript', 'score': 0.9977546}]
```

What if I remove the `const` token from the assignment?
```python
pipeline("foo = 'bar'")
# [{'label': 'javascript', 'score': 0.7176245}]
```

For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it:

```python
pipeline("foo = u'bar'")
# [{'label': 'python', 'score': 0.7638422}]
```
This is now detected as Python (Notice the `u` string modifier).

Okay, enough with the JS and Python domination already! Let's try fancier languages:

```python
pipeline("echo $FOO")
# [{'label': 'php', 'score': 0.9995257}]
```

(Yes, I used the word "fancy" to describe PHP 😅)

```python
pipeline("outcome := rand.Intn(6) + 1")
# [{'label': 'go', 'score': 0.9936151}]
```

Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as `:=` (the assignment operator in Go) are perfect predictors of the underlying language:

```python
pipeline(":=")
# [{'label': 'go', 'score': 0.9998052}]
```

By the way, because we trained our own custom tokenizer on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset, and it handles streams of bytes in a very generic way, syntactic constructs such `:=` are represented by a single token:

```python
self.tokenizer.encode(" :=", add_special_tokens=False)
# [521]
```

<br>

## Fine-tuning code

<details>

```python
import gzip
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Tuple

import numpy as np
import torch
from sklearn.metrics import f1_score
from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer
from tokenizers.processors import BertProcessing
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataset import Dataset
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm, trange

from transformers import RobertaForSequenceClassification
from transformers.data.metrics import acc_and_f1, simple_accuracy


logging.basicConfig(level=logging.INFO)


CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1"

LANGUAGES = [
    "go",
    "java",
    "javascript",
    "php",
    "python",
    "ruby",
]
FILES_PER_LANGUAGE = 1
EVALUATE = True

# Set up tokenizer
tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",)
tokenizer._tokenizer.post_processor = BertProcessing(
    ("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")),
)
tokenizer.enable_truncation(max_length=512)

# Set up Tensorboard
tb_writer = SummaryWriter()


class CodeSearchNetDataset(Dataset):
    examples: List[Tuple[List[int], int]]

    def __init__(self, split: str = "train"):
        """
        train | valid | test
        """

        self.examples = []

        src_files = []
        for language in LANGUAGES:
            src_files += list(
                Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz")
            )[:FILES_PER_LANGUAGE]
        for src_file in src_files:
            label = src_file.parents[3].name
            label_idx = LANGUAGES.index(label)
            print("🔥", src_file, label)
            lines = []
            fh = gzip.open(src_file, mode="rt", encoding="utf-8")
            for line in fh:
                o = json.loads(line)
                lines.append(o["code"])
            examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)]
            self.examples += examples
        print("🔥🔥")

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
        # We’ll pad at the batch level.
        return self.examples[i]


model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES))

train_dataset = CodeSearchNetDataset(split="train")
eval_dataset = CodeSearchNetDataset(split="test")


def collate(examples):
    input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1)
    labels = torch.tensor([x[1] for x in examples])
    # ^^  uncessary .unsqueeze(-1)
    return input_ids, labels


train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate)

batch = next(iter(train_dataloader))


model.to("cuda")
model.train()
for param in model.roberta.parameters():
    param.requires_grad = False
## ^^ Only train final layer.

print(f"num params:", model.num_parameters())
print(f"num trainable params:", model.num_parameters(only_trainable=True))


def evaluate():
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = np.empty((0), dtype=np.int64)
    out_label_ids = np.empty((0), dtype=np.int64)

    model.eval()

    eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate)
    for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")):
        with torch.no_grad():
            outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
            loss = outputs[0]
            logits = outputs[1]
            eval_loss += loss.mean().item()
            nb_eval_steps += 1
        preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0)
        out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
    eval_loss = eval_loss / nb_eval_steps
    acc = simple_accuracy(preds, out_label_ids)
    f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro")
    print("=== Eval: loss ===", eval_loss)
    print("=== Eval: acc. ===", acc)
    print("=== Eval: f1 ===", f1)
    # print(acc_and_f1(preds, out_label_ids))
    tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step)


### Training loop

global_step = 0
train_iterator = trange(0, 4, desc="Epoch")
optimizer = torch.optim.AdamW(model.parameters())
for _ in train_iterator:
    epoch_iterator = tqdm(train_dataloader, desc="Iteration")
    for step, (input_ids, labels) in enumerate(epoch_iterator):
        optimizer.zero_grad()
        outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
        loss = outputs[0]
        loss.backward()
        tb_writer.add_scalar("training_loss", loss.item(), global_step)
        optimizer.step()
        global_step += 1
        if EVALUATE and global_step % 50 == 0:
            evaluate()
            model.train()


evaluate()

os.makedirs("./models/CodeBERT-language-id", exist_ok=True)
model.save_pretrained("./models/CodeBERT-language-id")
```

</details>

<br>

## CodeSearchNet citation

<details>

```bibtex
@article{husain_codesearchnet_2019,
	title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
	shorttitle = {{CodeSearchNet} {Challenge}},
	url = {http://arxiv.org/abs/1909.09436},
	urldate = {2020-03-12},
	journal = {arXiv:1909.09436 [cs, stat]},
	author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
	month = sep,
	year = {2019},
	note = {arXiv: 1909.09436},
}
```

</details>