Create Agent-bert.py
Browse files- Agent-bert.py +40 -0
Agent-bert.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
from transformers import pipeline
|
4 |
+
model_name = "dbernsohn/roberta-java"
|
5 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
def preprocess_input(description):
|
8 |
+
input_text = "Generate an agent that " + description
|
9 |
+
inputs = tokenizer.encode(input_text, return_tensors='pt')
|
10 |
+
return inputs
|
11 |
+
def generate_agent_code(inputs):
|
12 |
+
generated_ids = model.generate(inputs)
|
13 |
+
agent_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
14 |
+
return agent_code
|
15 |
+
import os
|
16 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
17 |
+
from transformers import pipeline
|
18 |
+
|
19 |
+
# Load the pre-trained CodeBERTa model and tokenizer
|
20 |
+
model_name = "dbernsohn/roberta-java"
|
21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
|
24 |
+
# Function to pre-process user input description
|
25 |
+
def preprocess_input(description):
|
26 |
+
input_text = "Generate an agent that " + description
|
27 |
+
inputs = tokenizer.encode(input_text, return_tensors='pt')
|
28 |
+
return inputs
|
29 |
+
|
30 |
+
# Function to generate agent code using the fine-tuned model
|
31 |
+
def generate_agent_code(inputs):
|
32 |
+
generated_ids = model.generate(inputs)
|
33 |
+
agent_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
34 |
+
return agent_code
|
35 |
+
|
36 |
+
# Example usage
|
37 |
+
user_description = "can perform sentiment analysis on text data."
|
38 |
+
inputs = preprocess_input(user_description)
|
39 |
+
generated_code = generate_agent_code(inputs)
|
40 |
+
print(generated_code)
|