File size: 9,565 Bytes
5c96d64 1d4ede1 5c96d64 6397985 5c96d64 77b9166 5c96d64 95a20e8 2d84212 95a20e8 2d84212 95a20e8 5c96d64 77b9166 b58233e 5c96d64 6397985 5c96d64 7e0745d c6cab73 06dc6c3 7e0745d 5c96d64 7e0745d 5c96d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
language:
- en
- ko
license: cc-by-nc-4.0
tags:
- dnotitia
- nlp
- llm
- slm
- conversation
- chat
base_model:
- meta-llama/Meta-Llama-3.1-8B
library_name: transformers
pipeline_tag: text-generation
---
# DNA 1.0 8B Instruct
<p align="center">
<img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
</p>
**DNA 1.0 8B Instruct** is a <u>state-of-the-art (**SOTA**)</u> bilingual language model based on Llama architecture, specifically optimized for Korean language understanding and generation, while also maintaining strong English capabilities. The model was developed through a sophisticated process involving model merging via spherical linear interpolation (**SLERP**) with Llama 3.1 8B Instruct, and underwent knowledge distillation (**KD**) using Llama 3.1 405B as the teacher model. It was extensively trained through continual pre-training (**CPT**) with a high-quality Korean dataset. The training pipeline was completed with supervised fine-tuning (**SFT**) and direct preference optimization (**DPO**) to align with human preferences and enhance instruction-following abilities.
DNA 1.0 8B Instruct was fine-tuned on approximately 10B tokens of carefully curated data and has undergone extensive instruction tuning to enhance its ability to follow complex instructions and engage in natural conversations.
- **Developed by:** Dnotitia Inc.
- **Supported Languages:** Korean, English
- **Vocab Size:** 128,256
- **Context Length:** 131,072 tokens (128k)
- **License:** CC BY-NC 4.0
**NOTICE (Korean):**
λ³Έ λͺ¨λΈμ μμ
μ λͺ©μ μΌλ‘ νμ©νμ€ μ μμ΅λλ€. μμ
μ μ΄μ©μ μνμλ κ²½μ°, [Contact us](https://www.dnotitia.com/contact/post-form)λ₯Ό ν΅ν΄ λ¬Έμν΄ μ£ΌμκΈ° λ°λλλ€. κ°λ¨ν νμ μ μ°¨λ₯Ό κ±°μ³ μμ
μ νμ©μ μΉμΈν΄ λ리λλ‘ νκ² μ΅λλ€.
Try DNA-powered Mnemos Assistant! [Beta Open β](https://request-demo.dnotitia.ai/)
## Training Procedure
<p align="center">
<img src="assets/training-procedure.png" width="600" style="margin: 40px auto;">
</p>
## Evaluation
We evaluated DNA 1.0 8B Instruct against other prominent language models of similar size across various benchmarks, including Korean-specific tasks and general language understanding metrics. More details will be provided in the upcoming <u>Technical Report</u>.
| Language | Benchmark | **dnotitia/Llama-DNA-1.0-8B-Instruct** | LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct | LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | yanolja/EEVE-Korean-Instruct-10.8B-v1.0 | Qwen/Qwen2.5-7B-Instruct | meta-llama/Llama-3.1-8B-Instruct | mistralai/Mistral-7B-Instruct-v0.3 | NCSOFT/Llama-VARCO-8B-Instruct | upstage/SOLAR-10.7B-Instruct-v1.0 |
|----------|------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------|----------------------------------|------------------------------------|--------------------------------|-----------------------------------|
| Korean | KMMLU | **53.26** (1st) | 45.30 | 45.28 | 42.17 | <u>45.66</u> | 41.66 | 31.45 | 38.49 | 41.50 |
| | KMMLU-hard | **29.46** (1st) | 23.17 | 20.78 | 19.25 | <u>24.78</u> | 20.49 | 17.86 | 19.83 | 20.61 |
| | KoBEST | **83.40** (1st) | 79.05 | 80.13 | <u>81.67</u> | 78.51 | 67.56 | 63.77 | 72.99 | 73.26 |
| | Belebele | **57.99** (1st) | 40.97 | 45.11 | 49.40 | <u>54.85</u> | 54.70 | 40.31 | 53.17 | 48.68 |
| | CSATQA | <u>43.32</u> (2nd) | 40.11 | 34.76 | 39.57 | **45.45** | 36.90 | 27.27 | 32.62 | 34.22 |
| English | MMLU | 66.64 (3rd) | 65.27 | 64.32 | 63.63 | **74.26** | <u>68.26</u> | 62.04 | 63.25 | 65.30 |
| | MMLU-Pro | **43.05** (1st) | 40.73 | 38.90 | 32.79 | <u>42.5</u> | 40.92 | 33.49 | 37.11 | 30.25 |
| | GSM8K | **80.52** (1st) | 65.96 | <u>80.06</u> | 56.18 | 75.74 | 75.82 | 49.66 | 64.14 | 69.22 |
- The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
**Evaluation Protocol**
For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
| | Evaluation setting | Metric | Evaluation tool |
|------------|--------------------|-------------------------------------|-----------------|
| KMMLU | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
| KMMLU Hard | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
| KoBEST | 5-shot | macro\_avg / f1 | lm-eval-harness |
| Belebele | 0-shot | acc | lm-eval-harness |
| CSATQA | 0-shot | acc\_norm | lm-eval-harness |
| MMLU | 5-shot | macro\_avg / acc | lm-eval-harness |
| MMLU Pro | 5-shot | macro\_avg / exact\_match | lm-eval-harness |
| GSM8K | 5-shot | acc, exact\_match & strict\_extract | lm-eval-harness |
## Quickstart
This model requires `transformers >= 4.43.0`.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct')
model = AutoModelForCausalLM.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct', device_map='auto')
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
conversation = [
{"role": "system", "content": "You are a helpful assistant, Dnotitia DNA."},
{"role": "user", "content": "λμ μ΄λ¦μ?"},
]
inputs = tokenizer.apply_chat_template(conversation,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt").to(model.device)
_ = model.generate(**inputs, streamer=streamer)
```
## Limitations
While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:
- The model may occasionally generate biased or inappropriate content
- Responses are based on training data and may not reflect current information
- The model may sometimes produce factually incorrect or inconsistent answers
- Performance may vary depending on the complexity and domain of the task
- Generated content should be reviewed for accuracy and appropriateness
## License
This model is released under CC BY-NC 4.0 license. For commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
## Appendix
- KMMLU scores comparison chart:
<img src="assets/comparison-chart.png" width="100%" style="margin: 40px auto;">
- DNA 1.0 8B Instruct model architecture <sup>[1]</sup>:
<img src="assets/model-architecture.png" width="500" style="margin: 40px auto;">
[1]: <https://www.linkedin.com/posts/sebastianraschka_the-llama-32-1b-and-3b-models-are-my-favorite-activity-7248317830943686656-yyYD/>
- The median percentage of modelβs weight difference between before and after the merge (our SFT model + Llama 3.1 8B Instruct):
<img src="assets/ours-vs-merged.png" width="100%" style="margin: 40px auto;">
## Citation
If you use or discuss this model in your academic research, please cite the project to help spread awareness:
```
@article{dnotitiadna2024,
title = {Dnotitia DNA 1.0 8B Instruct},
author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
year = {2024},
url = {https://huggingface.co/dnotitia/DNA-1.0-8B-Instruct},
version = {1.0},
}
```
|