File size: 9,762 Bytes
5c96d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06f7496
5c96d64
1d4ede1
5c96d64
 
71f227c
 
 
 
 
6397985
5c96d64
 
 
 
 
 
 
 
 
 
77b9166
 
 
 
 
 
 
 
 
 
5c96d64
 
95a20e8
 
 
 
 
2d84212
 
95a20e8
2d84212
 
 
 
95a20e8
5c96d64
 
 
 
 
 
 
 
77b9166
 
b58233e
5c96d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6397985
5c96d64
 
 
7e0745d
c6cab73
06dc6c3
7e0745d
5c96d64
 
 
 
7e0745d
5c96d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
language:
- en
- ko
license: cc-by-nc-4.0
tags:
- dnotitia
- nlp
- llm
- slm
- conversation
- chat
base_model:
- meta-llama/Meta-Llama-3.1-8B
library_name: transformers
pipeline_tag: text-generation
---

# DNA 1.0 8B Instruct

<p align="center">
<img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
</p>

**DNA 1.0 8B Instruct** is a <u>state-of-the-art (**SOTA**)</u> bilingual language model based on Llama architecture, specifically optimized for Korean language understanding and generation, while also maintaining strong English capabilities. The model was developed through a sophisticated process involving model merging via spherical linear interpolation (**SLERP**) with Llama 3.1 8B Instruct, and underwent knowledge distillation (**KD**) using Llama 3.1 405B as the teacher model. It was extensively trained through continual pre-training (**CPT**) with a high-quality Korean dataset. The training pipeline was completed with supervised fine-tuning (**SFT**) and direct preference optimization (**DPO**) to align with human preferences and enhance instruction-following abilities.

DNA 1.0 8B Instruct was fine-tuned on approximately 10B tokens of carefully curated data and has undergone extensive instruction tuning to enhance its ability to follow complex instructions and engage in natural conversations.

- **Developed by:** Dnotitia Inc.
- **Supported Languages:** Korean, English
- **Model Release Date:** Dec 10, 2024
- **Vocab Size:** 128,256
- **Context Length:** 131,072 tokens (128k)
- **License:** CC BY-NC 4.0

<div style="padding: 2px 8px; background-color: hsl(240, 100%, 50%, 0.1); border-radius: 5px">
  <p><strong>NOTICE (Korean):</strong></p>
  <p>λ³Έ λͺ¨λΈμ€ 상업적 λͺ©μ μœΌλ‘œ ν™œμš©ν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€. 상업적 μ΄μš©μ„ μ›ν•˜μ‹œλŠ” 경우, <a href="https://www.dnotitia.com/contact/post-form">Contact us</a>λ₯Ό 톡해 λ¬Έμ˜ν•΄ μ£Όμ‹œκΈ° λ°”λžλ‹ˆλ‹€. κ°„λ‹¨ν•œ ν˜‘μ˜ 절차λ₯Ό 거쳐 상업적 ν™œμš©μ„ μŠΉμΈν•΄ λ“œλ¦¬λ„λ‘ ν•˜κ² μŠ΅λ‹ˆλ‹€.</p>
  <p>Try DNA-powered Mnemos Assistant! <a href="https://request-demo.dnotitia.ai/">Beta Open β†’</a></p>
</div>

## Training Procedure

<p align="center">
<img src="assets/training-procedure.png" width="600" style="margin: 40px auto;">
</p>

## Evaluation

We evaluated DNA 1.0 8B Instruct against other prominent language models of similar size across various benchmarks, including Korean-specific tasks and general language understanding metrics. More details will be provided in the upcoming <u>Technical Report</u>.

| Language | Benchmark  | **dnotitia/Llama-DNA-1.0-8B-Instruct** | LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct | LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | yanolja/EEVE-Korean-Instruct-10.8B-v1.0 | Qwen/Qwen2.5-7B-Instruct | meta-llama/Llama-3.1-8B-Instruct | mistralai/Mistral-7B-Instruct-v0.3 | NCSOFT/Llama-VARCO-8B-Instruct | upstage/SOLAR-10.7B-Instruct-v1.0 |
|----------|------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------|----------------------------------|------------------------------------|--------------------------------|-----------------------------------|
| Korean   | KMMLU      | **53.26** (1st)                        | 45.30                                | 45.28                                | 42.17                                   | <u>45.66</u>             | 41.66                            | 31.45                              | 38.49                          | 41.50                             |
|          | KMMLU-hard | **29.46** (1st)                        | 23.17                                | 20.78                                | 19.25                                   | <u>24.78</u>             | 20.49                            | 17.86                              | 19.83                          | 20.61                             |
|          | KoBEST     | **83.40** (1st)                        | 79.05                                | 80.13                                | <u>81.67</u>                            | 78.51                    | 67.56                            | 63.77                              | 72.99                          | 73.26                             |
|          | Belebele   | **57.99** (1st)                        | 40.97                                | 45.11                                | 49.40                                   | <u>54.85</u>             | 54.70                            | 40.31                              | 53.17                          | 48.68                             |
|          | CSATQA     | <u>43.32</u> (2nd)                     | 40.11                                | 34.76                                | 39.57                                   | **45.45**                | 36.90                            | 27.27                              | 32.62                          | 34.22                             |
| English  | MMLU       | 66.64 (3rd)                            | 65.27                                | 64.32                                | 63.63                                   | **74.26**                | <u>68.26</u>                     | 62.04                              | 63.25                          | 65.30                             |
|          | MMLU-Pro   | **43.05** (1st)                        | 40.73                                | 38.90                                | 32.79                                   | <u>42.5</u>              | 40.92                            | 33.49                              | 37.11                          | 30.25                             |
|          | GSM8K      | **80.52** (1st)                        | 65.96                                | <u>80.06</u>                         | 56.18                                   | 75.74                    | 75.82                            | 49.66                              | 64.14                          | 69.22                             |
- The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.

**Evaluation Protocol**   
For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:

|            | Evaluation setting | Metric                              | Evaluation tool |
|------------|--------------------|-------------------------------------|-----------------|
| KMMLU      | 5-shot             | macro\_avg / exact\_match           | lm-eval-harness |
| KMMLU Hard | 5-shot             | macro\_avg / exact\_match           | lm-eval-harness |
| KoBEST     | 5-shot             | macro\_avg / f1                     | lm-eval-harness |
| Belebele   | 0-shot             | acc                                 | lm-eval-harness |
| CSATQA     | 0-shot             | acc\_norm                           | lm-eval-harness |
| MMLU       | 5-shot             | macro\_avg / acc                    | lm-eval-harness |
| MMLU Pro   | 5-shot             | macro\_avg / exact\_match           | lm-eval-harness |
| GSM8K      | 5-shot             | acc, exact\_match & strict\_extract | lm-eval-harness |

## Quickstart

This model requires `transformers >= 4.43.0`.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

tokenizer = AutoTokenizer.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct')
model = AutoModelForCausalLM.from_pretrained('dnotitia/Llama-DNA-1.0-8B-Instruct', device_map='auto')
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

conversation = [
    {"role": "system", "content": "You are a helpful assistant, Dnotitia DNA."},
    {"role": "user", "content": "λ„ˆμ˜ 이름은?"},
]
inputs = tokenizer.apply_chat_template(conversation,
                                       add_generation_prompt=True,
                                       return_dict=True,
                                       return_tensors="pt").to(model.device)
_ = model.generate(**inputs, streamer=streamer)
```

## Limitations

While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:

- The model may occasionally generate biased or inappropriate content
- Responses are based on training data and may not reflect current information
- The model may sometimes produce factually incorrect or inconsistent answers
- Performance may vary depending on the complexity and domain of the task
- Generated content should be reviewed for accuracy and appropriateness

## License

This model is released under CC BY-NC 4.0 license. For commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).

## Appendix

- KMMLU scores comparison chart:
<img src="assets/comparison-chart.png" width="100%" style="margin: 40px auto;">

- DNA 1.0 8B Instruct model architecture <sup>[1]</sup>:
<img src="assets/model-architecture.png" width="500" style="margin: 40px auto;">

[1]: <https://www.linkedin.com/posts/sebastianraschka_the-llama-32-1b-and-3b-models-are-my-favorite-activity-7248317830943686656-yyYD/>

- The median percentage of model’s weight difference between before and after the merge (our SFT model + Llama 3.1 8B Instruct):
<img src="assets/ours-vs-merged.png" width="100%" style="margin: 40px auto;">

## Citation

If you use or discuss this model in your academic research, please cite the project to help spread awareness:

```
@article{dnotitiadna2024,
  title = {Dnotitia DNA 1.0 8B Instruct},
  author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
  year = {2024},
  url = {https://huggingface.co/dnotitia/DNA-1.0-8B-Instruct},
  version = {1.0},
}
```