Text2Text Generation
Transformers
PyTorch
English
t5
text-generation-inference
Inference Endpoints
File size: 8,082 Bytes
57d2cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import logging
from torch.utils.data import Dataset, IterableDataset
import gzip
import json
from transformers import Seq2SeqTrainer, AutoModelForSeq2SeqLM, AutoTokenizer, Seq2SeqTrainingArguments
import sys
from datetime import datetime
import torch
import random
from shutil import copyfile
import os
import wandb
import re


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)

parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="google/t5-v1_1-base")
parser.add_argument("--train_file", required=True)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--max_source_length", default=384, type=int)
parser.add_argument("--max_target_length", default=64, type=int)
parser.add_argument("--name", required=True)
parser.add_argument("--train_size", default=100*1000*1000, type=int)
parser.add_argument("--eval_size", default=10000, type=int)
parser.add_argument("--fp16", default=False, action='store_true')
parser.add_argument("--no_prefix", default=False, action='store_true')
args = parser.parse_args()

wandb.init(project="doc2query", name=f"{args.name}-{args.model_name}")


class PairDataset:
    def __init__(self, filepath):
        self.filepath = filepath
        self.examples = []

    def __iter__(self):
        with gzip.open(self.filepath, 'rt') as fIn:
            for line in fIn:
                example = self.get_example(json.loads(line))
               
                if example is not None:
                    self.examples.append(example)
                    yield example

        while True:
            random.shuffle(self.examples)
            for ex in self.examples:
                yield ex


    def get_example(self, raw_example):
        if isinstance(raw_example, dict): 
            if 'set' in raw_example:
                example = random.sample(raw_example['set'], 2)
            elif 'query' in raw_example:
                example = [raw_example['query'], random.choice(raw_example['pos'])]
            else:
                raise ValueError("Unknown format: "+str(raw_example))
        else:
            example = [raw_example[0], raw_example[1]]

        return example




class RedditTitleDataset(PairDataset):
    def get_example(self, raw_example):
        return [self.clean_title(raw_example['title']), raw_example['body']]


    def clean_title(self, text):
        text = text.replace("&", "&").strip()
        if text.startswith("["):
            text = re.sub("^\[[a-zA-Z0-9]+\]", "", text).strip()

        if text.endswith("]"):
            text = re.sub("\[[a-zA-Z0-9\.]+\]$", "", text).strip()

        if text.startswith("/r"):
            text = re.sub("^/[a-zA-Z0-9/]+[;,: \-]+", "", text).strip()

        return text


class StackExchangeTitleBodyDataset(PairDataset):
    def get_example(self, raw_example):
        return raw_example['texts']


class MultiDataset(IterableDataset):
    def __init__(self, train_config_path, num_samples):
        self.num_samples = num_samples

        with open(train_config_path) as fIn:
            train_config = json.load(fIn)

        self.categories = []
        self.files = {}
        self.file2dataset = {}
        self.file2datasetIter = {}

        for prefix in train_config:
            self.categories.extend([prefix]*train_config[prefix]['weight'])
            self.files[prefix] = []

            for filename, weight in train_config[prefix]['files'].items():
                self.files[prefix].extend([filename]*weight)
                dataset = self.OpenDataset(filename)
                self.file2dataset[filename] = dataset
                self.file2datasetIter[filename] = iter(dataset)

            random.shuffle(self.files[prefix])

        random.shuffle(self.categories)



        
    def OpenDataset(self, filepath):
        if 'reddit_title_text' in filepath:
            dataset = RedditTitleDataset(filepath)
        elif 'stackexchange_archive/jsonl' in filepath:
            dataset = StackExchangeTitleBodyDataset(filepath)
        else:
            dataset = PairDataset(filepath)
        return dataset
            

    def __len__(self):
        return self.num_samples

    def __iter__(self):
        while True:
            category = random.choice(self.categories)
            filepath = random.choice(self.files[category])
            dataset = self.file2datasetIter[filepath]
            pair = next(dataset)

            #Add prefix to the input
            if not args.no_prefix:
                pair[1] = category+": "+pair[1].strip()
            yield pair

    def delete_examples_cache(self):
        for dataset in self.file2dataset.values():
            dataset.examples = []



def main():
    ############ Model
    model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)

    save_steps = 5000

    output_dir = 'output/'+args.name+'-'+args.model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    print("Output dir:", output_dir)

    # Write self to path
    os.makedirs(output_dir, exist_ok=True)

    copyfile(args.train_file, os.path.join(output_dir, 'data_config.json'))
    train_script_path = os.path.join(output_dir, 'train_script.py')
    copyfile(__file__, train_script_path)
    with open(train_script_path, 'a') as fOut:
        fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))

    ####

    training_args = Seq2SeqTrainingArguments(
        output_dir=output_dir,
        fp16=args.fp16,
        fp16_backend="amp",
        per_device_train_batch_size=args.batch_size,
        evaluation_strategy="steps",
        save_steps=save_steps,
        logging_steps=100,
        eval_steps=save_steps, #logging_steps,
        warmup_steps=1000,
        save_total_limit=1,
        num_train_epochs=args.epochs,
        report_to="wandb",
    )

    ############ Arguments

    ############ Load datasets


    train_dataset = MultiDataset(args.train_file, args.train_size)
    train_dataset_iter = iter(train_dataset)
    eval_dataset = [next(train_dataset_iter) for _ in range(args.eval_size)]
    train_dataset.delete_examples_cache()  #Make sure dev data is no re-used for training

    for i in range(50):
        print("Target:", eval_dataset[i][0])
        print("Input:", eval_dataset[i][1])
        print("\n\n===================\n\n")

    print("Train dataset len:", len(train_dataset))

   
    def data_collator(examples):
        targets = [row[0] for row in examples]
        inputs = [row[1] for row in examples]
        label_pad_token_id = -100

        model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8 if training_args.fp16 else None)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=args.max_target_length, padding=True, truncation=True, pad_to_multiple_of=8 if training_args.fp16 else None)

        # replace all tokenizer.pad_token_id in the labels by -100 to ignore padding in the loss.
        labels["input_ids"] = [
            [(l if l != tokenizer.pad_token_id else label_pad_token_id) for l in label] for label in labels["input_ids"]
        ]


        model_inputs["labels"] = torch.tensor(labels["input_ids"])
        return model_inputs

    ## Define the trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
        data_collator=data_collator
    )

    ### Save the model
    train_result = trainer.train()
    trainer.save_model()
    
    
if __name__ == "__main__":
    main()

# Script was called via:
#python train_hf_trainer_prefix.py --train_file train_config.json --name all-datasets-v1