domenicrosati
commited on
Commit
•
9e23040
1
Parent(s):
ff9b824
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- paraphrasing
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: pegasus-xsum-finetuned-paws-parasci
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# pegasus-xsum-finetuned-paws-parasci
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [domenicrosati/pegasus-xsum-finetuned-paws](https://huggingface.co/domenicrosati/pegasus-xsum-finetuned-paws) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.2256
|
20 |
+
- Rouge1: 61.8854
|
21 |
+
- Rouge2: 43.1061
|
22 |
+
- Rougel: 57.421
|
23 |
+
- Rougelsum: 57.4417
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0001
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- training_steps: 4000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
- label_smoothing_factor: 0.1
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
56 |
+
| No log | 0.05 | 1000 | 3.8024 | 49.471 | 24.8024 | 43.4857 | 43.5552 |
|
57 |
+
| No log | 0.09 | 2000 | 3.6533 | 49.1046 | 24.4038 | 43.0189 | 43.002 |
|
58 |
+
| No log | 0.14 | 3000 | 3.5867 | 49.5026 | 24.748 | 43.3059 | 43.2923 |
|
59 |
+
| No log | 0.19 | 4000 | 3.5613 | 49.4319 | 24.5444 | 43.2225 | 43.1965 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.18.0
|
65 |
+
- Pytorch 1.11.0
|
66 |
+
- Datasets 2.1.0
|
67 |
+
- Tokenizers 0.12.1
|