--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-zh results: [] --- # whisper-base-zh This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3426 - Wer: 78.6221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4992 | 0.2075 | 100 | 0.4841 | 93.0091 | | 0.4325 | 0.4149 | 200 | 0.4223 | 82.7761 | | 0.4028 | 0.6224 | 300 | 0.3979 | 81.6616 | | 0.3866 | 0.8299 | 400 | 0.3846 | 79.8886 | | 0.3322 | 1.0373 | 500 | 0.3731 | 80.3951 | | 0.3108 | 1.2448 | 600 | 0.3672 | 79.2300 | | 0.3139 | 1.4523 | 700 | 0.3601 | 79.1287 | | 0.324 | 1.6598 | 800 | 0.3558 | 78.7741 | | 0.2629 | 1.8672 | 900 | 0.3525 | 78.1155 | | 0.2421 | 2.0747 | 1000 | 0.3521 | 78.5208 | | 0.217 | 2.2822 | 1100 | 0.3495 | 78.3688 | | 0.2071 | 2.4896 | 1200 | 0.3490 | 78.5714 | | 0.2183 | 2.6971 | 1300 | 0.3452 | 78.6727 | | 0.2158 | 2.9046 | 1400 | 0.3426 | 78.6221 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3